Matrix Factorizations and complete Intersection-rings
矩阵分解和完全相交环
基本信息
- 批准号:219422475
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Homological Mirror Symmetry conjecture, proposed by Kontsevich in 1994 as an explanation for a duality between Calabi-Yau three-folds observed in string theory, has had a profound impact on mathematics. In the course of his work on this conjecture Kontsevich rediscovered a construction in commutative algebra known as a matrix factorization. This construction was originally discovered by Eisenbud in 1980 and he used it to describe free resolutions over hypersurface rings. They have since been a standard tool in the representation theory of maximal Cohen-Macaulay modules. This connection between mathematics and physics afforded by matrix factorizations is just beginning to be explored. In this project we would work on several different problems over hypersurface rings, and more generally complete intersection rings, that are related to matrix factorizations and the above connection.
同调镜像对称猜想,由孔采维奇在1994年提出,作为弦理论中观察到的卡-丘三重对偶的解释,对数学产生了深远的影响。在他的工作过程中,这一猜想Kontsevich重新发现了建设交换代数称为矩阵分解。这个结构最初是由Eisenbud在1980年发现的,他用它来描述超曲面环的自由分辨率。它们从此成为极大Cohen-Macaulay模的表示论中的标准工具。矩阵分解所提供的数学和物理之间的这种联系才刚刚开始被探索。在这个项目中,我们将研究超曲面环上的几个不同问题,更一般地说,是与矩阵分解和上述连接有关的完全相交环。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jesse Burke其他文献
Dr. Jesse Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Computation of matrix factorizations for discriminants of pseudo-reflection groups
伪反射群判别式的矩阵分解计算
- 批准号:
NE/T014016/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Study of higher matrix factorizations categories
更高矩阵分解类别的研究
- 批准号:
17H06783 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Partitioning multisets with applications to factorizations in hypergraphs
通过应用于超图中的因式分解来划分多重集
- 批准号:
511438-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
CIF: Small: Index Coding and Matrix Factorizations
CIF:小:索引编码和矩阵分解
- 批准号:
1618689 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Optimal codes derived from multifold factorizations of cyclic groups and a certain kind of difference sets
循环群多重因式分解和某类差分集导出的最优码
- 批准号:
16K05269 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity Theory, Matrix Factorizations and Representations of Algebras.
奇异性理论、矩阵分解和代数表示。
- 批准号:
475655-2015 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Singularity Theory, Matrix Factorizations and Representations of Algebras.
奇异性理论、矩阵分解和代数表示。
- 批准号:
475655-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Factorizations, Projective Duality, and Cycles
因式分解、射影对偶性和循环
- 批准号:
RGPIN-2014-03848 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Massive Data Sets and Non-negative Matrix Factorizations
海量数据集和非负矩阵分解
- 批准号:
408697-2011 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Massive Data Sets and Non-negative Matrix Factorizations
海量数据集和非负矩阵分解
- 批准号:
408697-2011 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral