Polytopes in Combinatorics and Algebra
组合学和代数中的多面体
基本信息
- 批准号:1501059
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polytopes are geometric objects with flat sides: polygons in two dimensions, polyhedra in three dimensions, and higher-dimensional generalizations. Polytopes are ubiquitous in mathematics and play important roles throughout science and engineering. The simplest n-dimensional polytopes have only n+1 vertices and are called simplices: triangles, tetrahedra, and their higher-dimensional generalizations. While it is straightforward to determine the volume of a simplex in any dimension, the volume of a general polyhedron in high dimension can be challenging to compute. One way to calculate volume is to dissect a polytope into simplices. This research project studies dissections, volumes, and integer points of special families of polytopes known as flow and root polytopes. Flow and root polytopes naturally appear in problems in several areas of mathematics, such as representation theory and algebraic geometry. Results of this project will have impact in these areas of mathematics as well as in scientific and engineering applications.A number of important conjectures and questions in algebraic combinatorics have flow polytopes and root polytopes at their core. These special polytopes can be systematically dissected into simplices. The project will investigate a conjecture of Haglund about the bigraded Hilbert series of the space of diagonal harmonics that can be stated in terms of a sum of a certain weight function over the integer points of a flow polytope. The research will also study the subword complexes introduced by Knutson and Miller, conceived to illustrate the combinatorics of Schubert polynomials and determinantal ideals, by relating them to root polytopes.
多面体是具有平面的几何对象:二维的多边形、三维的多面体和更高维的泛化。多面体在数学中普遍存在,在整个科学和工程中扮演着重要的角色。最简单的n维多面体只有n+1个顶点,称为简单:三角形、四面体及其高维推广。虽然在任何维度上确定单纯形的体积是很简单的,但计算高维的一般多面体的体积可能是一件具有挑战性的事情。计算体积的一种方法是将一个多面体分解成几个简单的。这项研究项目研究了称为流多面体和根多面体的特殊多面体家族的解剖、体积和整点。流多面体和根多面体自然会出现在数学的几个领域中,例如表示论和代数几何。这个项目的结果将对这些数学领域以及科学和工程应用产生影响。代数组合数学中的一些重要猜想和问题都是以流多面体和根多面体为核心的。这些特殊的多面体可以被系统地解剖成简单的形状。该项目将调查Haglund关于对角调和空间的重希尔伯特级数的猜想,该猜想可以用流多面体的整点上的某个权函数的和来表示。本研究还将研究Knutson和Miller引入的子词复合体,这些子词复合体旨在通过将舒伯特多项式和行列式理想与根多面体联系起来来说明它们的组合。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From generalized permutahedra to Grothendieck polynomials via flow polytopes
通过流多面体从广义置换面体到格罗腾迪克多项式
- DOI:10.5802/alco.136
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Mészáros, Karola;St. Dizier, Avery
- 通讯作者:St. Dizier, Avery
Gelfand--Tsetlin Polytopes: A Story of Flow and Order Polytopes
格尔凡德--策特林多面体:流动与秩序多面体的故事
- DOI:10.1137/19m1251242
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Liu, Ricky I.;Mészáros, Karola;Dizier, Avery St.
- 通讯作者:Dizier, Avery St.
Counting Integer Points of Flow Polytopes
计算流多面体的整数点
- DOI:10.1007/s00454-021-00289-1
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Kapoor, Kabir;Mészáros, Karola;Setiabrata, Linus
- 通讯作者:Setiabrata, Linus
Root Cones and the Resonance Arrangement
根锥体和共振排列
- DOI:10.37236/8759
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gutekunst, Samuel C.;Mészáros, Karola;Petersen, T. Kyle
- 通讯作者:Petersen, T. Kyle
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karola Meszaros其他文献
Root polytopes, triangulations, and the subdivision algebra. I
根多面体、三角剖分和细分代数。
- DOI:
10.1090/s0002-9947-2011-05371-7 - 发表时间:
2009 - 期刊:
- 影响因子:1.3
- 作者:
Karola Meszaros - 通讯作者:
Karola Meszaros
Karola Meszaros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karola Meszaros', 18)}}的其他基金
A Polytopal View of Classical Polynomials
经典多项式的多面观
- 批准号:
2348676 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CAREER: Integer Point Transforms of Polytopes
职业:多面体的整数点变换
- 批准号:
1847284 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
相似海外基金
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Conference: 2023 Combinatorial Algebra meets Algebraic Combinatorics (CAAC)
会议:2023 组合代数遇上代数组合 (CAAC)
- 批准号:
2302019 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Conference: Women in Algebra and Combinatorics. Northeast Conference Celebrating the Association for Women in Mathematics: 50 Years and Counting
会议:代数和组合学中的女性。
- 批准号:
2305413 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Lagrangians from Algebra and Combinatorics
代数和组合学中的拉格朗日量
- 批准号:
EP/V049097/1 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
Fellowship