Operator algebras between theory and application
理论与应用之间的算子代数
基本信息
- 批准号:1501103
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-15 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Order matters. The order in which certain operations are performed can dramatically change the outcome in real life and in the sciences. However, in the usual multiplication of numbers the order is irrelevant. Since the product AB is the same as BA one says that the factors A and B commute. Inspired by the fundamentals of quantum mechanics, mathematicians have investigated a new type of multiplication that respects the order of operations. During the last century this has led to spectacular new discoveries in mathematical theories embracing noncommutativity (i.e., allowing AB to be different from BA) such as noncommutative geometry or quantum (i.e., noncommutative) probability. In this line of research a similar program is applied to fundamental concepts in classical harmonic analysis such as Fourier series and estimates for solving differential equations in noncommutative spaces. Quite surprisingly, the abstract tools developed in this investigation are also useful in other disciplines. The research of the principal investigator will include a thorough analysis of quantum channels in quantum information theory. Research in quantum information theory usually takes place in computer science and physic departments. However, as long as quantum computers are not available in large numbers, the limitations and advantages of quantum computers can be understood only using theoretical, mathematical tools. The same applies for the capacities of devices transmitting information through the use of quantum mechanics. Interdisciplinary research in this work will also include mathematical aspects of big data and compressed sensing. All aspects of this research will also serve to enhance the teaching mission of the university, and in particular the formation of students who are familiar with pure mathematics and certain applications alike.The theory of operator algebras provides many important tools that are essential in understanding noncommutative aspects of classical objects, such as Brownian motion, derivatives and derivations, tangent and cotangent spaces, Laplace-Beltrami operators, singular integral kernels, quantum channels, and capacity of quantum channels. The project will aim to connect theoretical aspects of the theory of completely positive maps with more applied aspects in quantum information theory and harmonic analysis, in particular those analytic properties of operators that have a geometric or metric flavor. The proposed work on the Grothendieck program for triple-tensor norms belongs to the core subject in operator space theory but is also motivated by quantum information and compressed sensing. Previous research of the principal investigator related to quantum information theory has already demonstrated the potential to connect to topics in computer science and physics. The proposed new research on private capacity of channels may even have an impact beyond science.
顺序很重要。某些操作的执行顺序可以极大地改变现实生活和科学中的结果。然而,在通常的数字乘法中,顺序是无关紧要的。因为乘积AB和BA是一样的有人说因子A和B可以交换。受量子力学基本原理的启发,数学家们研究了一种尊重运算顺序的新型乘法。在上个世纪,这导致了数学理论中惊人的新发现,包括非交换性(即,允许AB与BA不同),如非交换几何或量子(即,非交换)概率。在这条研究路线中,类似的程序被应用于经典谐波分析中的基本概念,如傅立叶级数和非交换空间中求解微分方程的估计。令人惊讶的是,在这项研究中开发的抽象工具在其他学科中也很有用。首席研究员的研究将包括对量子信息理论中的量子通道进行深入分析。量子信息理论的研究通常在计算机科学和物理系进行。然而,只要量子计算机没有大量可用,量子计算机的局限性和优势就只能通过理论和数学工具来理解。这同样适用于通过使用量子力学传输信息的设备的能力。这项工作的跨学科研究还将包括大数据和压缩感知的数学方面。这项研究的各个方面也将有助于提高大学的教学使命,特别是培养熟悉纯数学和某些应用的学生。算子代数理论为理解经典对象的非交换性提供了许多重要的工具,如布朗运动、导数和导数、正切和余切空间、拉普拉斯-贝尔特拉米算子、奇异积分核、量子通道和量子通道的容量。该项目旨在将完全正映射理论的理论方面与量子信息理论和谐波分析中的更多应用方面联系起来,特别是那些具有几何或度量风味的算子的解析性质。关于三张量范数的Grothendieck方案的研究属于算子空间理论的核心课题,但也受到量子信息和压缩感知的激励。首席研究员之前有关量子信息理论的研究已经证明了与计算机科学和物理学主题联系在一起的潜力。拟议中的关于私人频道容量的新研究甚至可能产生超越科学的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Junge其他文献
Embeddings of symmetric operator spaces into Lp-spaces, 1 ≤ p < 2, on finite von Neumann algebras
- DOI:
10.1007/s11856-025-2743-0 - 发表时间:
2025-03-27 - 期刊:
- 影响因子:0.800
- 作者:
Jinghao Huang;Marius Junge;Fedor Sukochev;Dmitriy Zanin - 通讯作者:
Dmitriy Zanin
Some estimates on entropy numbers
- DOI:
10.1007/bf02760951 - 发表时间:
1993-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Marius Junge;Martin Defant - 通讯作者:
Martin Defant
On the relation between completely bounded and (1,emcb/em)-summing maps with applications to quantum XOR games
关于完全有界映射与(1,emcb/em)-求和映射之间的关系及其在量子异或游戏中的应用
- DOI:
10.1016/j.jfa.2022.109708 - 发表时间:
2022-12-15 - 期刊:
- 影响因子:1.600
- 作者:
Marius Junge;Aleksander M. Kubicki;Carlos Palazuelos;Ignacio Villanueva - 通讯作者:
Ignacio Villanueva
Random variables in weak typep spaces
- DOI:
10.1007/bf01189933 - 发表时间:
1992-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Martin Defant;Marius Junge - 通讯作者:
Marius Junge
On ?ℒ∞ structures of nuclear C * -algebras
- DOI:
10.1007/s00208-002-0384-7 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Marius Junge;Narutaka Ozawa;Zhong-Jin Ruan - 通讯作者:
Zhong-Jin Ruan
Marius Junge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Junge', 18)}}的其他基金
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
- 批准号:
2247114 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Operator Algebra Theory in Applications
算子代数理论的应用
- 批准号:
1800872 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Great Plains Operator Theory Symposium (GPOTS) 2016
大平原算子理论研讨会 (GPOTS) 2016
- 批准号:
1566648 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Applications of operator algebra theory to certain problems in analysis
算子代数理论在某些分析问题中的应用
- 批准号:
0901457 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Noncommutative Hardy Spaces and Littlewood-Paley Theory
非交换 Hardy 空间和 Littlewood-Paley 理论
- 批准号:
0901009 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Quantum Probabilistic Methods in Operator Spaces and Applications
算子空间中的量子概率方法及其应用
- 批准号:
0556120 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Lp Estimates in Non-commutative Probability and Analysis
非交换概率和分析中的 Lp 估计
- 批准号:
0301116 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Non-commutative Lp-spaces and their Connection to Probability and Operator Spaces
非交换 Lp 空间及其与概率和算子空间的联系
- 批准号:
0088928 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
- 批准号:
RGPIN-2019-04420 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Interactions between operator algebras and topological dynamics
算子代数与拓扑动力学之间的相互作用
- 批准号:
2750740 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
DGECR-2021-00023 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Launch Supplement
Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
- 批准号:
RGPIN-2019-04420 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
- 批准号:
RGPIN-2019-04420 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Multivariable Operator Theory: The Interplay between Function Theory, Operator Theory and Operator Algebras
多变量算子理论:函数论、算子理论和算子代数之间的相互作用
- 批准号:
1900364 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Interactions between Reversible and Irreversible Operator Algebras
可逆算子代数与不可逆算子代数之间的相互作用
- 批准号:
1900916 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Interplay between harmonic analysis and operator algebras
调和分析与算子代数之间的相互作用
- 批准号:
RGPIN-2019-04420 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual