Applications of operator algebra theory to certain problems in analysis
算子代数理论在某些分析问题中的应用
基本信息
- 批准号:0901457
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractJungeThe aim of this proposal is to apply methods from the operator of algebras to problems in noncommutative analysis. This includes developing a theory of singular integrals and Fourier multipliers for noncommutative function spaces. The new insights gained from this work should also reflect back on the noncommutative spaces and their differential geometric properties. Another field of applications of tools from the theory of operator spaces lies in quantum information theory. Here violation of Bell inequalities and quantum error correction seems to relate well to the theory of cb-maps from operator space theory.In real life the order in which certain operations are executed can make a big difference. For example first boiling water and the adding oil is very different from first boiling oil and then adding water. The mathematical community has now fully accepted that one should allow the main object of interest to be performed in a certain order. Noncommutative analysis is about functions and their properties in the realm of non-commuting variables. The most important example here are matrix-valued functions. The theory of classical analysis, such as Fourier analysis or harmonic analysis has a lot to say about functions, and as this proposal intends to show, also about matrix-valued functions. Another natural application of this circle of ideas (the mathematical theory called functional analysis) lies in quantum information theory and the theoretical analysis of channels. Channels are the operation performed signals used to transport data in quantum information theory.
本文的目的是将代数算子的方法应用于非交换分析问题。这包括发展非交换函数空间的奇异积分和傅立叶乘数理论。从这项工作中获得的新见解也应该反映在非对易空间及其微分几何性质上。算子空间理论工具的另一个应用领域是量子信息理论。在这里违反贝尔不等式和量子纠错似乎涉及到理论的cb-地图从算子空间theory.In真实的生活中的顺序,其中某些操作的执行可以有很大的不同。例如,先煮水,然后加入油与先煮油,然后加水是非常不同的。数学界现在已经完全接受,人们应该允许主要的感兴趣的对象以一定的顺序进行。非交换分析是关于非交换变量领域中的函数及其性质。这里最重要的例子是矩阵值函数。经典分析的理论,如傅立叶分析或调和分析,有很多关于函数的内容,正如本提案所要展示的,也有关于矩阵值函数的内容。这个思想循环(称为泛函分析的数学理论)的另一个自然应用在于量子信息理论和通道的理论分析。信道是量子信息理论中用于传输数据的信号执行的操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Junge其他文献
Embeddings of symmetric operator spaces into Lp-spaces, 1 ≤ p < 2, on finite von Neumann algebras
- DOI:
10.1007/s11856-025-2743-0 - 发表时间:
2025-03-27 - 期刊:
- 影响因子:0.800
- 作者:
Jinghao Huang;Marius Junge;Fedor Sukochev;Dmitriy Zanin - 通讯作者:
Dmitriy Zanin
Some estimates on entropy numbers
- DOI:
10.1007/bf02760951 - 发表时间:
1993-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Marius Junge;Martin Defant - 通讯作者:
Martin Defant
Random variables in weak typep spaces
- DOI:
10.1007/bf01189933 - 发表时间:
1992-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Martin Defant;Marius Junge - 通讯作者:
Marius Junge
On the relation between completely bounded and (1,emcb/em)-summing maps with applications to quantum XOR games
关于完全有界映射与(1,emcb/em)-求和映射之间的关系及其在量子异或游戏中的应用
- DOI:
10.1016/j.jfa.2022.109708 - 发表时间:
2022-12-15 - 期刊:
- 影响因子:1.600
- 作者:
Marius Junge;Aleksander M. Kubicki;Carlos Palazuelos;Ignacio Villanueva - 通讯作者:
Ignacio Villanueva
On ?ℒ∞ structures of nuclear C * -algebras
- DOI:
10.1007/s00208-002-0384-7 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Marius Junge;Narutaka Ozawa;Zhong-Jin Ruan - 通讯作者:
Zhong-Jin Ruan
Marius Junge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Junge', 18)}}的其他基金
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
- 批准号:
2247114 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Operator Algebra Theory in Applications
算子代数理论的应用
- 批准号:
1800872 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Great Plains Operator Theory Symposium (GPOTS) 2016
大平原算子理论研讨会 (GPOTS) 2016
- 批准号:
1566648 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Operator algebras between theory and application
理论与应用之间的算子代数
- 批准号:
1501103 - 财政年份:2015
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Noncommutative Hardy Spaces and Littlewood-Paley Theory
非交换 Hardy 空间和 Littlewood-Paley 理论
- 批准号:
0901009 - 财政年份:2009
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Quantum Probabilistic Methods in Operator Spaces and Applications
算子空间中的量子概率方法及其应用
- 批准号:
0556120 - 财政年份:2006
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Lp Estimates in Non-commutative Probability and Analysis
非交换概率和分析中的 Lp 估计
- 批准号:
0301116 - 财政年份:2003
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Non-commutative Lp-spaces and their Connection to Probability and Operator Spaces
非交换 Lp 空间及其与概率和算子空间的联系
- 批准号:
0088928 - 财政年份:2000
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Operator Algebra Theory in Applications
算子代数理论的应用
- 批准号:
1800872 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Random Matrix Theory and its applications(Fostering Joint International Research)
随机矩阵理论及其应用(促进国际联合研究)
- 批准号:
15KK0162 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
- 批准号:
90749-2009 - 财政年份:2013
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
- 批准号:
90749-2009 - 财政年份:2012
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
- 批准号:
90749-2009 - 财政年份:2011
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
- 批准号:
90749-2009 - 财政年份:2010
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach algebra and operator space techniques in abstract harmonic analysis
Banach代数和算子空间技术在抽象调和分析中的应用
- 批准号:
90749-2009 - 财政年份:2009
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Elliptic quantum groups, deformed W algebras of type D and their applications to the analysis of Baxter's eight-vertex model
椭圆量子群、D型变形W代数及其在巴克斯特八顶点模型分析中的应用
- 批准号:
16540183 - 财政年份:2004
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of subfactors in theory of operator algebras and its applications
算子代数理论子因子的分类及其应用
- 批准号:
13640204 - 财政年份:2001
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classificaition of subfactors in operator algebra and its applications
算子代数子因子的分类及其应用
- 批准号:
10640200 - 财政年份:1998
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)