Non-commutative Lp-spaces and their Connection to Probability and Operator Spaces
非交换 Lp 空间及其与概率和算子空间的联系
基本信息
- 批准号:0088928
- 负责人:
- 金额:$ 8.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractJungeThe aim of this research is the investigation of the followingdifferent aspects of non-commutative spaces of p-integrable functions. If p is 1 such a space is the predual of von Neumann algebra and reflects important properties of the underlying operator algebra. We recall, that it is still open whether preduals of von Neumann are finitely represented in the space of trace class operators. Here, we focus on isometric characterization of finite dimensional spaces embedding into the predual of a von Neumann algebra and its connection to the theory of Lie-algebras and (non-commutative) stochastical processes. The investigation of the latter uses martingale inequalities based on recent progress by Pisier and Xu. We are interested in the non-commutative version of the Rosenthal/Burkholder inequality and Doob's maximal inequality. Maximal inequalities are also known as a useful tool in (stochastical) analysis. The more recent theory of operator spaces delivers the right framework for these investigations and reveals surprising properties of the non-commutative space of p-integrable functions associated to free groups. Non-commutative probability provides one possible framework for the probabilistic viewpoint in quantum mechanics. This theorycombines fundamental concepts of algebraic nature with analyticinsight and methods with roots in calculus. The non-commutative analogue for the spaces of p-integrable functions has a long tradition in the theory of operator algebras and provides a fruitful framework for understanding classical tools in probability. It is most challenging to reveal or overcome substantial differences between the commutative and non-commutative theory. This area enables the interaction between different streams inside the mathematical community and mathematical physics. This kind of interaction is one of the most important resources for new development in mathematics
摘要:本文研究了p可积函数的非交换空间的以下几个方面。如果p = 1,这样的空间就是von Neumann代数的前元,并且反映了底层算子代数的重要性质。回顾一下,冯诺依曼的前公数是否在迹类算子空间中有限表示仍然是开放的。在这里,我们将重点放在嵌入von Neumann代数前元的有限维空间的等距表征及其与李代数和(非交换)随机过程理论的联系上。后者的研究使用了基于Pisier和Xu最近进展的鞅不等式。我们感兴趣的是非交换版本的Rosenthal/Burkholder不等式和Doob的极大不等式。极大不等式在(随机)分析中也是一个有用的工具。最近的算子空间理论为这些研究提供了正确的框架,并揭示了与自由群相关的p可积函数的非交换空间的惊人性质。非交换概率为量子力学中的概率观点提供了一个可能的框架。这个理论结合了代数本质的基本概念与分析的洞察力和方法与微积分的根。p可积函数空间的非交换模拟在算子代数理论中有着悠久的传统,为理解概率中的经典工具提供了一个富有成效的框架。揭示或克服交换理论与非交换理论之间的本质差异是最具挑战性的。这个区域使数学社区和数学物理内部的不同流之间的交互成为可能。这种相互作用是数学新发展的重要资源之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Junge其他文献
Embeddings of symmetric operator spaces into Lp-spaces, 1 ≤ p < 2, on finite von Neumann algebras
- DOI:
10.1007/s11856-025-2743-0 - 发表时间:
2025-03-27 - 期刊:
- 影响因子:0.800
- 作者:
Jinghao Huang;Marius Junge;Fedor Sukochev;Dmitriy Zanin - 通讯作者:
Dmitriy Zanin
Some estimates on entropy numbers
- DOI:
10.1007/bf02760951 - 发表时间:
1993-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Marius Junge;Martin Defant - 通讯作者:
Martin Defant
Random variables in weak typep spaces
- DOI:
10.1007/bf01189933 - 发表时间:
1992-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Martin Defant;Marius Junge - 通讯作者:
Marius Junge
On the relation between completely bounded and (1,emcb/em)-summing maps with applications to quantum XOR games
关于完全有界映射与(1,emcb/em)-求和映射之间的关系及其在量子异或游戏中的应用
- DOI:
10.1016/j.jfa.2022.109708 - 发表时间:
2022-12-15 - 期刊:
- 影响因子:1.600
- 作者:
Marius Junge;Aleksander M. Kubicki;Carlos Palazuelos;Ignacio Villanueva - 通讯作者:
Ignacio Villanueva
On ?ℒ∞ structures of nuclear C * -algebras
- DOI:
10.1007/s00208-002-0384-7 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Marius Junge;Narutaka Ozawa;Zhong-Jin Ruan - 通讯作者:
Zhong-Jin Ruan
Marius Junge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Junge', 18)}}的其他基金
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
- 批准号:
2247114 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Operator Algebra Theory in Applications
算子代数理论的应用
- 批准号:
1800872 - 财政年份:2018
- 资助金额:
$ 8.77万 - 项目类别:
Continuing Grant
Great Plains Operator Theory Symposium (GPOTS) 2016
大平原算子理论研讨会 (GPOTS) 2016
- 批准号:
1566648 - 财政年份:2016
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Operator algebras between theory and application
理论与应用之间的算子代数
- 批准号:
1501103 - 财政年份:2015
- 资助金额:
$ 8.77万 - 项目类别:
Continuing Grant
Applications of operator algebra theory to certain problems in analysis
算子代数理论在某些分析问题中的应用
- 批准号:
0901457 - 财政年份:2009
- 资助金额:
$ 8.77万 - 项目类别:
Continuing Grant
Noncommutative Hardy Spaces and Littlewood-Paley Theory
非交换 Hardy 空间和 Littlewood-Paley 理论
- 批准号:
0901009 - 财政年份:2009
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Quantum Probabilistic Methods in Operator Spaces and Applications
算子空间中的量子概率方法及其应用
- 批准号:
0556120 - 财政年份:2006
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Lp Estimates in Non-commutative Probability and Analysis
非交换概率和分析中的 Lp 估计
- 批准号:
0301116 - 财政年份:2003
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
- 批准号:
2302682 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
- 批准号:
2302341 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
- 批准号:
23K03056 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Measuring singularities in commutative algebra
测量交换代数中的奇点
- 批准号:
2302430 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Continuing Grant