SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
基本信息
- 批准号:1502172
- 负责人:
- 金额:$ 24.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research will advance theoretical understanding of fundamental issues related to genomic data analysis, as well as the design and implementation of practical techniques to effectively protect privacy. The proposed research is central to preventing privacy breaches for both study participants and regular individuals due to released summary statistics and results. A primary outcome of this research will be a suite of novel tools and technologies and a Web-portal for privacy preserving analysis of genomic data, which will help researchers in their endeavor to meet growing expectations in protecting privacy and provide privacy assurance when regular individuals share their genetic profiles. The proposed research will contribute significantly and creatively to the limited base of knowledge in the area of preserving privacy in genetic analysis. This research will involve, through courses and thesis projects, graduate and undergraduate students to enhance their knowledge and skills in solving problems in data mining, statistical analysis, privacy, and bioinformatics. The PIs will collaborate with industrial partners at Baylor College of Medicine and MD Anderson Cancer Institute to validate the effectiveness of developed tools. The proposed work is tied to a key health problem (i.e. genetic privacy) and will make a fundamental contribution to computer and information sciences, and biomedical research. The proposed research activities include the following three major tasks: 1) develop novel differential privacy preserving techniques to provide rigorous privacy guarantees for genetic participants when researchers publish genomic summary statistics and/or conduct advanced analysis; 2) systematically evaluate potential privacy breaches for regular individuals due to the released genomic statistics and analysis results; and 3) work with collaborators to evaluate the efficacy of developed methods using real genomic data (cancer and Alzheimer?s disease) and build an integrated Web-portal environment to provide researchers secure, reliable, and privacy preserving access to (anonymized) genomic raw data, statistics, and analysis results.
拟议的研究将推进对基因组数据分析相关基本问题的理论理解,以及有效保护隐私的实用技术的设计和实施。拟议的研究对于防止研究参与者和普通个人因发布汇总统计数据和结果而侵犯隐私至关重要。这项研究的主要成果将是一套新的工具和技术,以及一个用于基因组数据隐私保护分析的门户网站,这将有助于研究人员奋进满足人们对保护隐私的日益增长的期望,并在普通人分享他们的基因图谱时提供隐私保证。 拟议的研究将大大有助于创造性地保护隐私的遗传分析领域的知识基础有限。这项研究将涉及,通过课程和论文项目,研究生和本科生,以提高他们的知识和技能,解决数据挖掘,统计分析,隐私和生物信息学的问题。PI将与贝勒医学院和MD安德森癌症研究所的行业合作伙伴合作,验证所开发工具的有效性。拟议的工作与一个关键的健康问题(即遗传隐私)有关,并将对计算机和信息科学以及生物医学研究做出根本性贡献。建议的研究活动包括以下三个主要任务:1)开发新的差异隐私保护技术,以在研究人员发布基因组汇总统计和/或进行高级分析时为遗传参与者提供严格的隐私保证; 2)系统地评估由于发布基因组统计和分析结果而对普通个体造成的潜在隐私泄露;和3)与合作者一起使用真实的基因组数据(癌症和阿尔茨海默病?的疾病),并建立一个集成的门户网站环境,为研究人员提供安全,可靠和隐私保护访问(匿名)基因组原始数据,统计数据和分析结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinghua Shi其他文献
Bayesian Hyperparameter Optimization for Machine Learning Based eQTL Analysis
基于机器学习的 eQTL 分析的贝叶斯超参数优化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew Quitadamo;James Johnson;Xinghua Shi - 通讯作者:
Xinghua Shi
Joint Participant and Learning Topology Selection for Federated Learning in Edge Clouds
边缘云联邦学习的联合参与者和学习拓扑选择
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.3
- 作者:
Xinliang Wei;Kejiang Ye;Xinghua Shi;Chengzhong Xu;Yu Wang - 通讯作者:
Yu Wang
Reaction induced elastoplastic deformation and interlayer cracking during oxidation in copper nanowires
铜纳米线氧化过程中反应诱导的弹塑性变形和层间开裂
- DOI:
10.1016/j.engfracmech.2025.111131 - 发表时间:
2025-05-27 - 期刊:
- 影响因子:5.300
- 作者:
Yulong Gong;Jici Wen;Qinghua Meng;Kai Zhang;Xinghua Shi - 通讯作者:
Xinghua Shi
Dynamics of An Archael DNA Polymerase Revealed By Single Molecule Fret
- DOI:
10.1016/j.bpj.2009.12.362 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Xinghua Shi;Cheng Liu;Isaac K.O. Cann;Taekjip Ha - 通讯作者:
Taekjip Ha
The International Conference on Intelligent Biology and Medicine (ICIBM) 2020: Data-driven analytics in biomedical genomics
- DOI:
10.1186/s12920-020-00833-7 - 发表时间:
2020-12-28 - 期刊:
- 影响因子:2.000
- 作者:
Xinghua Shi;Zhongming Zhao;Kai Wang;Li Shen - 通讯作者:
Li Shen
Xinghua Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinghua Shi', 18)}}的其他基金
CAREER: Integrative Approaches to Uncovering Complex Genotype-Phenotype Relationships in High Dimensional Genomics Data
职业:揭示高维基因组数据中复杂基因型-表型关系的综合方法
- 批准号:
2001080 - 财政年份:2019
- 资助金额:
$ 24.3万 - 项目类别:
Continuing Grant
CAREER: Integrative Approaches to Uncovering Complex Genotype-Phenotype Relationships in High Dimensional Genomics Data
职业:揭示高维基因组数据中复杂基因型-表型关系的综合方法
- 批准号:
1750632 - 财政年份:2018
- 资助金额:
$ 24.3万 - 项目类别:
Continuing Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
- 批准号:
1523154 - 财政年份:2015
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
相似国自然基金
MYB、NAC等转录因子响应相对低温调控扩展蛋白EXP控制桂花花开放的分子机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
血管紧张素II在脑缺血再灌注损伤中的作用机制与新型AT1受体拮抗剂—化合物EXP-2528的保护作用研究
- 批准号:30572187
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
SCH: EXP: Collaborative Research: Privacy-Preserving Framework for Publishing Electronic Healthcare Records
SCH:EXP:合作研究:发布电子医疗记录的隐私保护框架
- 批准号:
1836945 - 财政年份:2017
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
- 批准号:
1602394 - 财政年份:2016
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Design of a wearable biosensor system with wireless network for the remote detection of life threatening events in neonates
SCH:EXP:协作研究:设计具有无线网络的可穿戴生物传感器系统,用于远程检测新生儿危及生命的事件
- 批准号:
1664815 - 财政年份:2016
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
- 批准号:
1602198 - 财政年份:2016
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
- 批准号:
1502273 - 财政年份:2015
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Cognitive Haptic Based Rehabilitation System for Patient-Centric Home
SCH:EXP:协作研究:基于认知触觉的康复系统,用于以患者为中心的家庭
- 批准号:
1502287 - 财政年份:2015
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Cognitive Haptic Based Rehabilitation System for Patient-Centric Home
SCH:EXP:协作研究:基于认知触觉的康复系统,用于以患者为中心的家庭
- 批准号:
1502339 - 财政年份:2015
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Design of a wearable biosensor system with wireless network for the remote detection of life threatening events in neonates
SCH:EXP:协作研究:设计具有无线网络的可穿戴生物传感器系统,用于远程检测新生儿危及生命的事件
- 批准号:
1401690 - 财政年份:2014
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Exploring Sparsity and Spectral-Temporal Decomposition in Real-Time Network Modulation for Intractable Epilepsy
SCH:EXP:合作研究:探索顽固性癫痫实时网络调制中的稀疏性和频谱-时间分解
- 批准号:
1406447 - 财政年份:2014
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Hierarchical Capacitive Sensing for Environmental Control and Physical Therapy for Patients with Paralysis
SCH:EXP:合作研究:用于瘫痪患者环境控制和物理治疗的分层电容传感
- 批准号:
1406626 - 财政年份:2014
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant