CAREER: Integrative Approaches to Uncovering Complex Genotype-Phenotype Relationships in High Dimensional Genomics Data
职业:揭示高维基因组数据中复杂基因型-表型关系的综合方法
基本信息
- 批准号:1750632
- 负责人:
- 金额:$ 59.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-15 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The unprecedented accumulation of genomic data offers a unique opportunity to dive deep into the understanding of biology given appropriate tools to mine such data. This research will enable and accelerate the capabilities needed to realize the promise envisioned for big data genomics, and establish a new paradigm for genomics by fully exploiting the gamut of genomic datasets to better understand basis biology. Specifically, this project will combine robust statistical modeling and rigorous computational approaches toward predictive modeling of genomics data. Successful completion of the project will result in new knowledge, new tools, and most importantly long-lasting transformative enhancement of the usability and significance of genomic data. This project will have impact on education in genomics and bioinformatics at undergraduate and graduate levels and will outreach to K-12 students and underrepresented groups. To capitalize on the gamut of genomic data toward better understanding of biological systems, the community is in dire need of accurate, robust, scalable, and efficient methods to interpret such data toward predictive modeling of various phenotypes. Echoing the PI's overarching career goal of providing easy-to-use data analytics and software tools to computational and experimental scientists in life sciences, this research will result in a suite of tools that allow biologists to conduct novel scientific research in elucidating the landscape of genotype-phenotype relationships. The project will advance science through 1) novel Bayesian hierarchical models that incorporate domain knowledge to predict phenotypes from genotypes; 2) iterative pipelines to capitalize on the new models for uncovering the complex relationships between genotypes and phenotypes; and 3) new software modules integrated with existing data science infrastructure for scalable modeling and visualization of large-scale and high-dimensional genomic data. Further information may be found at https://shilab.uncc.edu.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基因组数据的空前积累为深入了解生物学提供了一个独特的机会,只要有适当的工具来挖掘这些数据。这项研究将实现并加速实现大数据基因组学所设想的承诺所需的能力,并通过充分利用基因组数据集的范围来更好地了解基础生物学,建立基因组学的新范式。具体而言,该项目将结合联合收割机强大的统计建模和严格的计算方法,对基因组数据的预测建模。该项目的成功完成将带来新的知识,新的工具,最重要的是基因组数据的可用性和重要性的长期变革性增强。该项目将对本科和研究生阶段的基因组学和生物信息学教育产生影响,并将向K-12学生和代表性不足的群体推广。为了利用基因组数据的范围来更好地理解生物系统,该社区迫切需要准确,强大,可扩展和有效的方法来解释这些数据,以预测各种表型的建模。与PI的总体职业目标相呼应,即为生命科学中的计算和实验科学家提供易于使用的数据分析和软件工具,这项研究将产生一套工具,使生物学家能够进行新的科学研究,以阐明基因型-表型关系的景观。该项目将通过以下方式推进科学:1)新型贝叶斯分层模型,该模型结合了领域知识,可从基因型中预测表型; 2)迭代管道,可利用新模型来揭示基因型和表型之间的复杂关系; 3)与现有数据科学基础设施集成的新软件模块,用于大规模和高维基因组数据的可扩展建模和可视化。更多信息可以在www.example.com上找到https://shilab.uncc.edu.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinghua Shi其他文献
Bayesian Hyperparameter Optimization for Machine Learning Based eQTL Analysis
基于机器学习的 eQTL 分析的贝叶斯超参数优化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew Quitadamo;James Johnson;Xinghua Shi - 通讯作者:
Xinghua Shi
Joint Participant and Learning Topology Selection for Federated Learning in Edge Clouds
边缘云联邦学习的联合参与者和学习拓扑选择
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.3
- 作者:
Xinliang Wei;Kejiang Ye;Xinghua Shi;Chengzhong Xu;Yu Wang - 通讯作者:
Yu Wang
Reaction induced elastoplastic deformation and interlayer cracking during oxidation in copper nanowires
铜纳米线氧化过程中反应诱导的弹塑性变形和层间开裂
- DOI:
10.1016/j.engfracmech.2025.111131 - 发表时间:
2025-05-27 - 期刊:
- 影响因子:5.300
- 作者:
Yulong Gong;Jici Wen;Qinghua Meng;Kai Zhang;Xinghua Shi - 通讯作者:
Xinghua Shi
Dynamics of An Archael DNA Polymerase Revealed By Single Molecule Fret
- DOI:
10.1016/j.bpj.2009.12.362 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Xinghua Shi;Cheng Liu;Isaac K.O. Cann;Taekjip Ha - 通讯作者:
Taekjip Ha
The International Conference on Intelligent Biology and Medicine (ICIBM) 2020: Data-driven analytics in biomedical genomics
- DOI:
10.1186/s12920-020-00833-7 - 发表时间:
2020-12-28 - 期刊:
- 影响因子:2.000
- 作者:
Xinghua Shi;Zhongming Zhao;Kai Wang;Li Shen - 通讯作者:
Li Shen
Xinghua Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinghua Shi', 18)}}的其他基金
CAREER: Integrative Approaches to Uncovering Complex Genotype-Phenotype Relationships in High Dimensional Genomics Data
职业:揭示高维基因组数据中复杂基因型-表型关系的综合方法
- 批准号:
2001080 - 财政年份:2019
- 资助金额:
$ 59.43万 - 项目类别:
Continuing Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
- 批准号:
1502172 - 财政年份:2015
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
EDU: Collaborative: Enhancing Education in Genetic Privacy with Integration of Research in Computer Science and Bioinformatics
EDU:协作:通过整合计算机科学和生物信息学研究来加强遗传隐私教育
- 批准号:
1523154 - 财政年份:2015
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
相似国自然基金
建立integrative分析新策略挖掘肺腺癌致癌相关关键分子
- 批准号:31801123
- 批准年份:2018
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Chinese Journal of Integrative Medicine
- 批准号:81224004
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Integrative Approaches for Cancer Survivorship: A Multi-Site Feasibility and Acceptability Study
癌症生存的综合方法:多中心可行性和可接受性研究
- 批准号:
10729453 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Integrative Approaches for Characterising Small-Molecule Binding to Disordered Proteins
表征小分子与无序蛋白质结合的综合方法
- 批准号:
BB/X009955/1 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Fellowship
Integrative approaches to advancing retention, engagement, and graduation in STEM students across a multi-campus open-access institution
在多校区开放获取机构中采用综合方法提高 STEM 学生的保留率、参与度和毕业率
- 批准号:
2221026 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
Integrative computational-experimental approaches to stratify monogenic disease risk
综合计算实验方法对单基因疾病风险进行分层
- 批准号:
10889297 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Integrative approaches defining the ontogeny, maintenance, and immune response dynamics of marginal-zone B cells
定义边缘区 B 细胞个体发育、维持和免疫反应动力学的综合方法
- 批准号:
10660534 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Bayesian integrative approaches for high-dimensional imaging and genomic data
高维成像和基因组数据的贝叶斯综合方法
- 批准号:
RGPIN-2019-04810 - 财政年份:2022
- 资助金额:
$ 59.43万 - 项目类别:
Discovery Grants Program - Individual
Integrative data science approaches for rare disease discovery in health records
用于发现健康记录中罕见疾病的综合数据科学方法
- 批准号:
10626148 - 财政年份:2022
- 资助金额:
$ 59.43万 - 项目类别:
Integrative approaches to understand systemic lupus erythematosus etiology in trans-ancestry genetic studies
跨祖先遗传学研究中了解系统性红斑狼疮病因的综合方法
- 批准号:
10577502 - 财政年份:2022
- 资助金额:
$ 59.43万 - 项目类别:
Integrative approaches to understand systemic lupus erythematosus etiology in trans-ancestry genetic studies
跨祖先遗传学研究中了解系统性红斑狼疮病因的综合方法
- 批准号:
10708065 - 财政年份:2022
- 资助金额:
$ 59.43万 - 项目类别:
New Bayesian statistical mechanical approaches to integrative structural biology using unassigned NMR and mass spectrometry
使用未分配的核磁共振和质谱进行综合结构生物学的新贝叶斯统计机械方法
- 批准号:
RGPIN-2022-03287 - 财政年份:2022
- 资助金额:
$ 59.43万 - 项目类别:
Discovery Grants Program - Individual