Puzzles, Quantum K-Theory, and Other Topics in Schubert Calculus

舒伯特微积分中的谜题、量子 K 理论和其他主题

基本信息

  • 批准号:
    1503662
  • 负责人:
  • 金额:
    $ 29.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This research project concerns several open questions in the general area of enumerative geometry. The motivating goal in this subject is to determine the number of geometric figures of a fixed type that satisfy a list of conditions. These conditions could involve that the figures contain given points, meet other figures, or have tangents with specified properties. Surprisingly, while it can be extremely difficult to determine the precise list of solution figures that satisfy the conditions, it is often possible to predict the number of such solutions. The search for formulas for the number of solutions to enumerative problems has uncovered deep and beautiful combinatorial structures that are of interest in numerous fields, including geometry, combinatorics, representation theory, complexity theory in computer science, and mirror symmetry in physics. The PI will engage both graduate and undergraduate students in his research with the aim of recruiting new talent to mathematics in general and to enumerative geometry in particular. The PI is currently the thesis advisor of one Ph.D student, and two additional students have recently completed their Ph.D degrees under his supervision. The PI has supervised projects in the Research Experience for Undergraduates (REU) program at Rutgers University in 7 out of the past 8 summers. The awarded research grant will enable him to continue this activity. The PI will also develop computer software to facilitate research in his area, and he will help organizing conferences and workshops.Much information about the enumerative geometry of subvarieties in a flag manifold is encoded in its cohomology ring, as well as in more general cohomology theories. A major goal in Schubert calculus is to obtain formulas for the multiplicative structure constants of this ring with respect to its basis of Schubert classes. The PI will attempt to prove a positive combinatorial formula that expresses the cohomological structure constants of any three-step flag variety as the number of puzzles that can be created using a list of puzzle pieces. The Gromov-Witten invariants of a flag manifold X count the number of rational curves that meet general Schubert varieties in X when this number is finite. When infinitely many curves meet a general configuration of Schubert varieties, the collection of these curves form a moduli space called a Gromov-Witten variety. Gromov-Witten varieties in turn define K-theoretic Gromov-Witten invariants that are encoded in the quantum K-theory ring of X. The study of this ring provides a useful benchmark for our understanding of the singularities and rationality properties of Gromov-Witten varieties and related spaces. The PI will attempt to answer several open questions about positivity and finiteness properties of quantum K-theory. The methods to be used in this project come from geometry and combinatorics, with computer experiments as a central tool.
这个研究计画涉及计数几何一般领域的几个开放性问题。本学科的激励目标是确定满足一系列条件的固定类型几何图形的数量。这些条件可能涉及图形包含给定点,满足其他图形,或具有指定属性的切线。令人惊讶的是,虽然确定满足条件的解图的精确列表非常困难,但通常可以预测这样的解的数量。 对计数问题的解的数量公式的研究揭示了许多领域感兴趣的深刻而美丽的组合结构,包括几何学,组合学,表示论,计算机科学中的复杂性理论和物理学中的镜像对称。PI将从事研究生和本科生在他的研究与招聘新的人才的目的是数学一般和枚举几何特别。 PI目前是一名博士生的论文导师,另外两名学生最近在他的指导下完成了博士学位。PI在过去的8个夏天中有7个在罗格斯大学的本科生研究经验(REU)项目中监督项目。 获得的研究补助金将使他能够继续这项活动。PI还将开发计算机软件,以促进他所在领域的研究,他将帮助组织会议和研讨会。旗流形中子簇的枚举几何的许多信息都编码在其上同调环中,以及更一般的上同调理论中。 舒伯特微积分的一个主要目标是得到这个环关于它的舒伯特类的基的乘法结构常数的公式。 PI将尝试证明一个正组合公式,该公式将任何三步旗的上同调结构常数表示为可以使用拼图块列表创建的拼图的数量。旗帜流形X的Gromov-Witten不变量计算X中满足一般舒伯特簇的有理曲线的数量(当该数量有限时)。 当无穷多条曲线满足舒伯特簇的一般配置时,这些曲线的集合形成称为Gromov-Witten簇的模空间。Gromov-Witten簇反过来定义了编码在X的量子K理论环中的K理论Gromov-Witten不变量。 这一环的研究为我们理解Gromov-Witten簇及其相关空间的奇异性和合理性提供了一个有用的基准。 PI将试图回答几个关于量子K理论的正性和有限性的开放性问题。 在这个项目中使用的方法来自几何学和组合学,计算机实验作为一个中心工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anders Buch其他文献

Styringen af ingeniørprofessionen
工程师专业的施蒂林根
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anders Buch
  • 通讯作者:
    Anders Buch
Ingeniørpraksis og normativiteter i STS forskningen
福斯克宁根 STS 的设计与规范
  • DOI:
    10.7146/tfa.v14i3.108916
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anders Buch
  • 通讯作者:
    Anders Buch

Anders Buch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anders Buch', 18)}}的其他基金

Collaborative Research: Calculus beyond Schubert
合作研究:舒伯特之外的微积分
  • 批准号:
    2152316
  • 财政年份:
    2022
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
K-Theory, Cyclic Homology, and Motives
K 理论、循环同调和动机
  • 批准号:
    1505539
  • 财政年份:
    2015
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Classical and Modern Schubert Calculus
古典和现代舒伯特微积分
  • 批准号:
    1205351
  • 财政年份:
    2012
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Quantum K-theory and other topics in enumerative geometry
量子 K 理论和计数几何中的其他主题
  • 批准号:
    0906148
  • 财政年份:
    2009
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Formulas for Quiver Varieties and Quantum Schubert Calculus
箭袋品种和量子舒伯特微积分的公式
  • 批准号:
    0603822
  • 财政年份:
    2006
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Spectral theory of relativistic quantum Hamiltonians
相对论量子哈密顿量的谱论
  • 批准号:
    2903825
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Studentship
Number theory and geometry behind quantum interaction models
量子相互作用模型背后的数论和几何
  • 批准号:
    24K16941
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了