Holomorphic Dynamics in one and several variables

一变量和多变量的全纯动力学

基本信息

  • 批准号:
    1505342
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Dynamical systems are mathematical models that allow researchers to study physical phenomenon that evolve with time: from motion of the planets to stock markets. The PI studies holomorphic dynamics, which refers to iterations of certain complex-valued maps that admit a rich geometry. The subject has numerous interactions with other areas of mathematics, in particular with the important subjects of Teichmuller Theory and Multidimensional Complex Analysis. The PI will continue her work concerning geometric aspects of holomorphic dynamics and in particular she will work to extend certain parts of the the theory from dynamics of one complex variable to several complex variables. The PI will continue to provide special topical lectures to undergraduate and graduate students in the hope of exciting the interest of students in the field of dynamical systems and, more broadly, in mathematics.The link between holomorphic dynamics and Teichmuller Theory can be to a large extent explained by holomorphic motions. The PI, together with collaborators, suggest a geometric approach to the proof of Slodkowski's lambda lemma. We relate holomorphic motions to the technique of filling totally real manifolds by holomorphic discs. We plan to use this approach to investigate the h-principle for holomorphic motions over Riemann surfaces. Thurston's theorem on postcritically finite rational maps is one of the central results in one-dimensional holomorphic dynamics. Building on Thurston's work, A. Epstein introduced deformation spaces, which give a unified approach to transversality results in holomorphic dynamics. The PI, together with collaborators, will investigate certain topological properties of these deformation spaces. In one-dimensional holomorphic dynamics to a large extent the orbits of critical points determine the dynamics of the map. For an automorphism of complex plane there are no critical points however there are various analogs of the critical points in different dynamically defined regions. The research will investigate these critical loci and their application to the construction of topological models. We also study the non-linearizable germs of analytic diffeomorphisms of complex plane.
动力系统是一种数学模型,它允许研究人员研究随时间演变的物理现象:从行星的运动到股票市场。PI研究全纯动力学,它指的是某些允许丰富几何的复值映射的迭代。这门学科与数学的其他领域有许多互动,特别是与泰奇穆勒理论和多维复杂分析等重要学科。PI将继续她关于全纯动力学的几何方面的工作,特别是她将把理论的某些部分从一个复变量的动力学扩展到几个复变量。PI将继续为本科生和研究生提供专题讲座,希望能激发学生对动力系统领域的兴趣,更广泛地说,对数学的兴趣。全纯动力学和泰奇穆勒理论之间的联系在很大程度上可以用全纯运动来解释。PI及其合作者提出了一种几何方法来证明斯洛德科夫斯基引理。将全纯运动与全纯盘填充全实流形的技术联系起来。我们计划用这种方法来研究黎曼曲面上全纯运动的h原理。后批判有限有理映射的瑟斯顿定理是一维全纯动力学的核心成果之一。在瑟斯顿工作的基础上,a .爱泼斯坦引入了变形空间,它为全纯动力学中的横向结果提供了统一的方法。PI将与合作者一起研究这些变形空间的某些拓扑性质。在一维全纯动力学中,关键点的轨道在很大程度上决定了图的动力学。对于复平面的自同构不存在临界点,但在不同的动态定义区域中有各种类似的临界点。本研究将探讨这些关键位点及其在构建拓扑模型中的应用。我们还研究了复平面解析微分同态的非线性胚芽。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tatiana Firsova其他文献

Tatiana Firsova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Analysis and Dynamics in Several Complex Variables
多个复杂变量的分析和动力学
  • 批准号:
    2349865
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Analysis and Dynamics in Several Complex Variables
多个复杂变量的分析和动力学
  • 批准号:
    2054989
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Pulse dynamics of a 3-component reaction-diffusion system in neighborhoods of several bifurcation points
多个分叉点附近三分量反应扩散系统的脉冲动力学
  • 批准号:
    15K04995
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holomorphic Dynamics in One and Several Variables
一变量和多变量的全纯动力学
  • 批准号:
    1408261
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: Dynamics in Several Complex Variables, in Context
职业:在上下文中几个复杂变量的动态
  • 批准号:
    1348589
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Examples for complex dynamics in several variables
多个变量的复杂动力学示例
  • 批准号:
    1102597
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Problems in Potential Theory and Dynamics in Several Complex Variables
势理论和多复杂变量动力学问题
  • 批准号:
    0140627
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Measuring the brain dynamics in several kind of disordered subjects by optical topography and its application to their treatment and educational training.
通过光学地形测量几种紊乱受试者的大脑动态及其在治疗和教育培训中的应用。
  • 批准号:
    14201013
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Cell dynamics from the viewpoint of cell proliferation and cell death in several hereditary intestinal polyposis syndrome.
从细胞增殖和细胞死亡的角度来看几种遗传性肠息肉病综合征的细胞动力学。
  • 批准号:
    08671417
  • 财政年份:
    1996
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics of wood machining equipment; visit to several universities in Japan
木材加工设备动力学;
  • 批准号:
    133007-1992
  • 财政年份:
    1992
  • 资助金额:
    $ 12万
  • 项目类别:
    Bilateral Exchange Program (H)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了