Analysis and Dynamics in Several Complex Variables

多个复杂变量的分析和动力学

基本信息

  • 批准号:
    2349865
  • 负责人:
  • 金额:
    $ 33.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award supports research at the interface of several complex variables, differential geometry, and dynamical systems. Complex analysis studies the behavior and regularity of functions defined on and taking values in spaces of complex numbers. It remains an indispensable tool across many domains in the sciences, engineering, and economics. This project considers the smoothness of transformations on a domain defined by complex valued functions when the domain is deformed. Using integral formulas, the PI will study how invariants of a domain vary when the underlying structure of the domain changes. Another component of the project involves the study of resonance. The PI will use small divisors that measure non-resonance to classify singularities of the complex structure arising in linear approximations of curved manifolds. The project will involve collaboration with researchers in an early career stage and will support the training of graduate students.Motivated by recent counterexamples showing that smooth families of domains may be equivalent by a discontinuous family of biholomorphisms, the PI will study the existence of families of biholomorphisms between families of domains using biholomorphism groups and other analytic tools such as Bergman metrics. The PI will construct a global homotopy formula with good estimates for suitable domains in a complex manifold. One of the goals is to construct a global formula in cases when a local homotopy formula fails to exist. The PI will use such global homotopy formulas to investigate the stability of holomorphic embeddings of domains with strongly pseudoconvex or concave boundary in a complex manifold, when the complex structure on the domains is deformed. The PI will use this approach to investigate stability of global Cauchy-Riemann structures on Cauchy-Riemann manifolds of higher codimension. The project seeks a holomorphic classification of neighborhoods of embeddings of a compact complex manifold in complex manifolds via the Levi-form and curvature of the normal bundle. In addition, the PI will study the classification of Cauchy-Riemann singularities for real manifolds using methods from several complex variables and small-divisor conditions in dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持在几个复杂的变量,微分几何和动力系统的接口的研究。复分析研究在复数空间中定义并取值的函数的行为和规律性。它仍然是科学,工程和经济学许多领域不可或缺的工具。本文研究复值函数定义的域在变形时变换的光滑性。使用积分公式,PI将研究当域的底层结构发生变化时,域的不变量如何变化。该项目的另一个组成部分涉及共振的研究。PI将使用测量非共振的小因子来对弯曲流形的线性近似中产生的复杂结构的奇异性进行分类。该项目将涉及在职业生涯的早期阶段与研究人员的合作,并将支持研究生的培训。最近的反例表明,光滑的域族可能等价于一个不连续的家庭的双全纯,PI将研究家庭的存在性的双全纯域之间使用双全纯群和其他分析工具,如伯格曼度量。PI将构造一个全局同伦公式,并对复流形中的合适域进行良好的估计。目标之一是在局部同伦公式不存在的情况下构造全局公式。PI将使用这样的整体同伦公式来研究复流形中具有强伪凸或凹边界的域的全纯嵌入的稳定性,当域上的复结构变形时。PI将使用这种方法来研究高余维Cauchy-Riemann流形上的全局Cauchy-Riemann结构的稳定性。该项目寻求通过列维形式和法丛的曲率对紧致复流形在复流形中的嵌入邻域进行全纯分类。此外,PI将使用动力系统中的多复变量和小因子条件的方法研究真实的流形的Cauchy-Riemann奇点的分类。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianghong Gong其他文献

Real analytic manifolds in Cn with parabolic complex tangents along a submanifold of codimension one
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianghong Gong
  • 通讯作者:
    Xianghong Gong
Regularity of a $$\overline{\partial }$$-Solution Operator for Strongly $$\mathbf{C}$$-Linearly Convex Domains with Minimal Smoothness
$$overline{partial }$$-强$$mathbf{C}$$-具有最小平滑度的线性凸域的解算子的正则性
  • DOI:
    10.1007/s12220-020-00443-w
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianghong Gong;Loredana Lanzani
  • 通讯作者:
    Loredana Lanzani
On regularity of $\overline\partial$-solutions on $a_q$ domains with $C^2$ boundary in complex manifolds
复流形中具有 $C^2$ 边界的 $a_q$ 域上 $overlinepartial$ 解的正则性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianghong Gong
  • 通讯作者:
    Xianghong Gong
Conformal maps, monodromy transformations, and non-reversible Hamiltonian systems
  • DOI:
    10.4310/mrl.2000.v7.n4.a13
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Xianghong Gong
  • 通讯作者:
    Xianghong Gong
H\"{o}lder estimates for homotopy operators on strictly pseudoconvex domains with $C^2$ boundary
  • DOI:
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianghong Gong
  • 通讯作者:
    Xianghong Gong

Xianghong Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xianghong Gong', 18)}}的其他基金

Conference: Junior Workshop in Several Complex Variables
会议:几个复杂变量的初级研讨会
  • 批准号:
    2347824
  • 财政年份:
    2024
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Analysis and Dynamics in Several Complex Variables
多个复杂变量的分析和动力学
  • 批准号:
    2054989
  • 财政年份:
    2021
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Conference on Complex Analysis and Geometry
复杂分析与几何会议
  • 批准号:
    1500302
  • 财政年份:
    2015
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Geometric Function Theory
几何函数理论中的实子流形和全纯映射
  • 批准号:
    0705426
  • 财政年份:
    2007
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Conference on Complex Analysis
复杂分析会议
  • 批准号:
    0539113
  • 财政年份:
    2006
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Geometric Function Theory
几何函数理论中的实子流形和全纯映射
  • 批准号:
    0305474
  • 财政年份:
    2003
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0196090
  • 财政年份:
    2000
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0072003
  • 财政年份:
    2000
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0196036
  • 财政年份:
    2000
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0096047
  • 财政年份:
    1999
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Analysis and Dynamics in Several Complex Variables
多个复杂变量的分析和动力学
  • 批准号:
    2054989
  • 财政年份:
    2021
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Pulse dynamics of a 3-component reaction-diffusion system in neighborhoods of several bifurcation points
多个分叉点附近三分量反应扩散系统的脉冲动力学
  • 批准号:
    15K04995
  • 财政年份:
    2015
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holomorphic Dynamics in one and several variables
一变量和多变量的全纯动力学
  • 批准号:
    1505342
  • 财政年份:
    2015
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Holomorphic Dynamics in One and Several Variables
一变量和多变量的全纯动力学
  • 批准号:
    1408261
  • 财政年份:
    2014
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
CAREER: Dynamics in Several Complex Variables, in Context
职业:在上下文中几个复杂变量的动态
  • 批准号:
    1348589
  • 财政年份:
    2014
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Continuing Grant
Examples for complex dynamics in several variables
多个变量的复杂动力学示例
  • 批准号:
    1102597
  • 财政年份:
    2011
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Problems in Potential Theory and Dynamics in Several Complex Variables
势理论和多复杂变量动力学问题
  • 批准号:
    0140627
  • 财政年份:
    2002
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Measuring the brain dynamics in several kind of disordered subjects by optical topography and its application to their treatment and educational training.
通过光学地形测量几种紊乱受试者的大脑动态及其在治疗和教育培训中的应用。
  • 批准号:
    14201013
  • 财政年份:
    2002
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Cell dynamics from the viewpoint of cell proliferation and cell death in several hereditary intestinal polyposis syndrome.
从细胞增殖和细胞死亡的角度来看几种遗传性肠息肉病综合征的细胞动力学。
  • 批准号:
    08671417
  • 财政年份:
    1996
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics of wood machining equipment; visit to several universities in Japan
木材加工设备动力学;
  • 批准号:
    133007-1992
  • 财政年份:
    1992
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Bilateral Exchange Program (H)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了