Spin - Orbital Angular Momentum Coupled Ultra-cold Atomic Gases

自旋-轨道角动量耦合超冷原子气体

基本信息

  • 批准号:
    1505496
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The advances of modern electrical devices are often driven by the discovery of new quantum materials. In many materials, the coupling between electron spins and their motional degrees of freedom (linear momentum and orbital angular momentum), i.e., spin-orbit coupling, plays a crucial role in the underlying material properties. Understanding the effects of spin-orbit coupling in a controllable platform could provide important guidelines for future design and discovery of new quantum materials with desirable properties and functionalities. In this context, ultra-cold atomic gases offer such a controllable platform for material design and discovery with unprecedented level of control and precision in experiments. Previous research has realized one type of spin-orbit coupling (the coupling between spin and linear momentum) for ultra-cold atoms, which now becomes one major research frontier in physics. However, another important and fundamental type of spin-orbit coupling, the coupling between spin and orbital angular momentum (SOAM coupling), has not been explored for ultra-cold atomic gases. In this project, the generation of SOAM coupling for ultra-cold atoms and their applications in engineering new quantum states will be studied. The study of such highly controllable SOAM coupled cold atomic platform will in turn influence the future electronic material design and discovery. This work will not only pave the way for coherent control of cold atomic systems for many important applications (e.g., material design, quantum computation, precision measurement, etc.), but will also influence fundamental research in cold atomic and condensed matter physics. The major objective of this project is to investigate the generation and applications of SOAM coupling in ultra-cold atomic gases using higher order Laguerre-Gaussian (LG) laser modes. Another goal is to study the cold atomic physics with spatially varying spin-linear-momentum (SLM) coupling using higher order Hermit-Gaussian (HG)) laser modes. Specific tasks include: 1) Study the generation of SOAM coupling or spatially varying SLM coupling using LG or HG Raman laser modes; 2) Investigate ground states and collective dynamics of cold atoms in the presence of SOAM coupling and HG-SLM coupling; c) Explore novel quantum phases induced by SOAM or HG-SLM couplings for both bosons and fermions. Various numerical and analytical methods (e.g., mean field approximation, time-evolving-block-decimation algorithm, perturbation theory, etc.) will be applied. The work will provide a diverse platform for both graduate and undergraduate students to explore theoretical cold atomic and condensed matter physics. In addition, this effort will include outreach activities for K-12 students and involvement of students from under-represented groups, such as women and minority students.
现代电子设备的进步通常是由新量子材料的发现推动的。在许多材料中,电子自旋和它们的运动自由度(线动量和轨道角动量)之间的耦合,即,自旋-轨道耦合在底层材料性质中起着至关重要的作用。了解可控平台中的自旋轨道耦合效应可以为未来设计和发现具有理想性能和功能的新量子材料提供重要指导。在这种背景下,超冷原子气体为材料设计和发现提供了这样一个可控平台,具有前所未有的控制水平和实验精度。以往的研究已经实现了超冷原子的一种自旋-轨道耦合(自旋与线动量之间的耦合),这是目前物理学的一个重要研究前沿。然而,另一种重要的和基本的自旋-轨道耦合,自旋和轨道角动量之间的耦合(SOAM耦合),还没有被探索用于超冷原子气体。本计画将研究超冷原子的SOAM耦合产生及其在工程新量子态中的应用。这种高度可控的SOAM耦合冷原子平台的研究将反过来影响未来电子材料的设计和发现。这项工作不仅将为许多重要应用的冷原子系统的相干控制铺平道路(例如,材料设计、量子计算、精密测量等),也将影响冷原子和凝聚态物理学的基础研究。 本计画的主要目的是探讨高阶拉盖尔-高斯(LG)雷射模式在超冷原子气体中产生SOAM耦合的方法及其应用。另一个目标是利用高阶厄米-高斯(HG)激光模式研究空间变化自旋-线动量(SLM)耦合的冷原子物理。具体任务包括:1)研究利用LG或HG拉曼激光模式产生SOAM耦合或空间变化的SLM耦合; 2)研究SOAM耦合和HG-SLM耦合下冷原子的基态和集体动力学; 3)探索玻色子和费米子的SOAM或HG-SLM耦合诱导的新量子相位。各种数值和分析方法(例如,平均场近似、时变分块抽取算法、微扰理论等)将被应用。这项工作将为研究生和本科生探索理论冷原子和凝聚态物理提供一个多样化的平台。此外,这项工作将包括为K-12学生开展外联活动,并让妇女和少数民族学生等代表性不足的群体的学生参与。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Momentum space Aharonov-Bohm interferometry in Rashba spin-orbit coupled Bose-Einstein condensates
  • DOI:
    10.1209/0295-5075/123/10005
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junpeng Hou;Xiwang Luo;K. Sun;Chuanwei Zhang
  • 通讯作者:
    Junpeng Hou;Xiwang Luo;K. Sun;Chuanwei Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chuanwei Zhang其他文献

LiDAR-IMU-UWB-Based Collaborative Localization
基于LiDAR-IMU-UWB的协同定位
  • DOI:
    10.3390/wevj13020032
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Chuanwei Zhang;Xiaowen Ma;Peilin Qin
  • 通讯作者:
    Peilin Qin
Many-Body Anderson Metal-Insulator Transition using Kicked Quantum Gases
使用踢量子气体的多体安德森金属-绝缘体转变
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Hui See Toh;Mengxin Du;Xinxin Tang;Ying Su;Tristan Rojo;Carson O. Patterson;Nicolas R. Williams;Chuanwei Zhang;Subhadeep Gupta
  • 通讯作者:
    Subhadeep Gupta
Comparison of different methods for generating structural colors on polymer surface using femtosecond laser
飞秒激光在聚合物表面产生结构色的不同方法比较
  • DOI:
    10.1016/j.optlastec.2025.113029
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Xiaoyun Sun;Wenjun Wang;Xuesong Mei;Aifei Pan;Longlong He;Tong Chen;Chuanwei Zhang
  • 通讯作者:
    Chuanwei Zhang
Alignment of Fesub3/subOsub4/sub/CNT electrodes via magnetic blade printing for wireless stress-direction-recognizing strain sensor
通过磁刀片印刷法对准 Fe₃O₄/CNT 电极用于无线应力方向识别应变传感器
  • DOI:
    10.1016/j.cej.2023.145825
  • 发表时间:
    2023-10-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Guangwei Wang;Chenhao Cong;Xianbing Zheng;Hongjiang Li;Fuhao Jiang;Xuhao Wang;Rong Li;Mingliang Jin;Pengfei Zhang;Junru Li;Chuanwei Zhang;SeHyun Kim;Shandong Li;Xinlin Li
  • 通讯作者:
    Xinlin Li

Chuanwei Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chuanwei Zhang', 18)}}的其他基金

Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Non-Hermitian Physics in Ultracold Atoms and Photonics
超冷原子和光子学中的非厄米物理
  • 批准号:
    2409943
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2240449
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 2: Neutral Atom Based Quantum Information Processing
ExpandQISE:轨道 2:基于中性原子的量子信息处理
  • 批准号:
    2228725
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Non-Hermitian Physics in Ultracold Atoms and Photonics
超冷原子和光子学中的非厄米物理
  • 批准号:
    2110212
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Spin Tensors in Ultracold Atomic Gases
超冷原子气体中的自旋张量
  • 批准号:
    1806227
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topological States and Quantum Information in Semiconductors and Cold Atom Superfluids
合作研究:半导体和冷原子超流体中的拓扑态和量子信息
  • 批准号:
    1249293
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological States and Quantum Information in Semiconductors and Cold Atom Superfluids
合作研究:半导体和冷原子超流体中的拓扑态和量子信息
  • 批准号:
    1104546
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

Probing Human Vision with Orbital Angular Momentum of Light
用光的轨道角动量探测人类视觉
  • 批准号:
    2886175
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
THz orbital angular momentum analysis based on the topological charge conservation law
基于拓扑电荷守恒定律的太赫兹轨道角动量分析
  • 批准号:
    23K17885
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Spin-valley conduction in atomic-layer materials controlled by orbital angular momentum of light
由光轨道角动量控制的原子层材料中的自旋谷传导
  • 批准号:
    22K04863
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Observation of transition radiation carrying orbital angular momentum
携带轨道角动量的跃迁辐射的观测
  • 批准号:
    21K12531
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Laser sources and semiconductor optical amplifiers for free-space orbital angular momentum communication systems
用于自由空间轨道角动量通信系统的激光源和半导体光放大器
  • 批准号:
    2607955
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Transfer of orbital angular momentum in high-harmonicgeneration
高次谐波产生中轨道角动量的转移
  • 批准号:
    440556973
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grants
EAGER SARE: Physical-Layer Security of THz Communication Using Orbital Angular Momentum and Rapid Frequency Hopping
EAGER SARE:使用轨道角动量和快速跳频的太赫兹通信物理层安全
  • 批准号:
    2028824
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Properties of Orbital Angular Momentum (OAM) Waves with Respect to Wireless Communication in Complex Environments and to Electromagnetic Interference
轨道角动量 (OAM) 波对于复杂环境中无线通信和电磁干扰的特性
  • 批准号:
    432301241
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grants
Theoretical and Experimental Study of the Influence of Orbital Angular Momentum of Light on High-Intensity Laser-Plasma Interactions
光轨道角动量对高强度激光-等离子体相互作用影响的理论与实验研究
  • 批准号:
    1903098
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Generation of High-Power, High-Order Orbital Angular Momentum Laser Beams and Application in Atom Trapping
高功率、高阶轨道角动量激光束的产生及其在原子捕获中的应用
  • 批准号:
    1904025
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了