Compact Objects and Gravitational Radiation
致密物体和引力辐射
基本信息
- 批准号:1505824
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The General Theory of Relativity discovered by Einstein tells us that the familiar, everyday force of gravity is a manifestation of something much stranger: the bending of the geometry of space-time by matter. Among the key predictions of the theory is the existence of gravitational waves (GW): ripples moving at the speed of light in the geometry of space-time caused by the fast motion of large masses. Although well tested in terms of their indirect effects on binary systems of compact stars, the direct detection of gravitational waves incident on Earth poses an outstanding challenge. The scientific rewards from achieving this ability would be enormous - ranging from probing the extreme dynamics of exploding stars to gleaning information about the state of the Universe almost at the moment of the Big Bang itself. The effort to enable this new window on the universe has occupied several decades of experimental and technological developments that have pushed the boundaries across diverse fields in the physical sciences. When the Advanced Laser Interferometric Gravitational Wave Observatory (aLIGO) reaches designed sensitivity as scheduled, the burst of radiation that may become the first detection of gravitational waves is already closer to the Earth than the closest star, Alfa Centauri. The gravitational waves in this first detection, and others following soon after, were very likely produced during the merger of binary systems involving black holes and/or neutron stars. There is realistic optimism that, at the turn of the decade, enough of these and other sources will be observed to state with confidence that proper observational gravitational wave physics has arrived. This will of course depend on having in place exquisite interferometric engineering, clever analysis of extremely noisy data, and state of the art source modeling. Regarding the latter, it is imperative to continue exploiting the tools of numerical relativity to model not only as many gravitational wave source scenarios as possible, but also to improve the physics content captured by the simulations. The science in this project supports directly this enterprise, namely numerical relativity modeling to enhance our understanding of sources of gravitational radiation and of gravitational phenomena driving electromagnetic signatures. The proposed research will have an impact beyond the confines of gravitational wave physics and numerical relativity. Achieving success in the multi-messenger, computing, and data-analytics projects in this project necessitates an interdisciplinary environment reaching across astrophysics, computing science and even engineering. The Center for Relativistic Astrophysics at Georgia Tech will be capable of providing such an environment since its mission is to foster research and education linking high-energy astrophysics, astro-particle physics, cosmology and gravitational wave physics.This award supports research focused on the computational modeling of black holes and neutron stars as sources of gravitational radiation. The proposal considers several projects that involve astrophysics with a common denominator -- the crucial role played by dynamical gravity and the curvature of space-time. The astrophysical phenomena in these projects arise from a marriage between general relativistic gravitation and complex multi-physics involving fluid flows, electromagnetic fields, radiation transport and realistic equations of state. The effort also aims at enhancing our comprehensive understanding of astrophysical phenomena beyond what gravitational waves alone will be able to tell, in other words, electromagnetic and gravitational wave phenomena leading to multi-messenger observations. The research is organized into two areas: 1) Compact object binaries and a sandbox of simulation data; and 2) Tidal stellar disruptions by massive black holes. The proposed work will give postdocs and students the opportunity to interact with researchers in computing science and engineering, to develop and implement numerical algorithms for magneto-hydrodynamics, work with large data sets and to participate in a variety of outreach activities. The experience gained in high performance computing, optimization, data analytics, and software engineering will further the careers of young researchers participating in the effort, acquiring valuable skills that are in demand in a broad range of professions.
爱因斯坦发现的广义相对论告诉我们,我们熟悉的、日常的引力是一种更奇怪的东西的表现:物质弯曲时空的几何形状。该理论的关键预测之一是引力波(GW)的存在:由大质量的快速运动引起的时空几何中以光速移动的涟漪。虽然在它们对致密恒星双星系统的间接影响方面得到了很好的检验,但直接探测入射到地球上的引力波仍然是一个突出的挑战。实现这种能力的科学回报将是巨大的-从探测爆炸恒星的极端动力学到收集有关宇宙状态的信息几乎在大爆炸本身的时刻。为了实现这一新的宇宙窗口,已经花费了几十年的实验和技术发展,这些发展推动了物理科学各个领域的界限。当高级激光干涉引力波天文台(aLIGO)如期达到设计灵敏度时,可能成为引力波首次探测的辐射爆发已经比最近的星星阿尔法半人马座更接近地球。第一次探测到的引力波,以及随后不久的其他引力波,很可能是在包含黑洞和/或中子星的双星系统合并过程中产生的。有一种现实的乐观主义,即在这十年之交,将观察到足够的这些和其他来源,并有信心地说,适当的观测引力波物理已经到来。当然,这将取决于是否拥有精致的干涉测量工程,对极其嘈杂的数据进行巧妙的分析,以及最先进的源建模。关于后者,必须继续利用数值相对论的工具,不仅要模拟尽可能多的引力波源场景,而且要改善模拟所捕获的物理内容。该项目中的科学直接支持这项事业,即数值相对论建模,以增强我们对引力辐射源和驱动电磁特征的引力现象的理解。 拟议中的研究将产生超越引力波物理学和数值相对论范围的影响。 要在该项目的多信使、计算和数据分析项目中取得成功,需要一个跨学科的环境,跨越天体物理学、计算科学甚至工程学。格鲁吉亚理工学院的相对论天体物理中心将能够提供这样一个环境,因为它的使命是促进高能天体物理学、天体粒子物理学、宇宙学和引力波物理学之间的研究和教育。该奖项支持专注于黑洞和中子星作为引力辐射源的计算建模的研究。该提案考虑了几个涉及天体物理学的项目,这些项目有一个共同点-动力学引力和时空曲率所起的关键作用。这些项目中的天体物理现象源于广义相对论引力和复杂的多物理学之间的结合,涉及流体流动,电磁场,辐射传输和现实的状态方程。这项工作还旨在提高我们对天体物理现象的全面理解,超越引力波本身所能告诉的,换句话说,电磁和引力波现象导致多信使观测。 该研究分为两个领域:1)紧凑型物体双星和模拟数据沙箱; 2)大质量黑洞对潮汐恒星的破坏。拟议的工作将使博士后和学生有机会与计算科学和工程领域的研究人员互动,开发和实施磁流体力学的数值算法,使用大型数据集并参与各种推广活动。在高性能计算,优化,数据分析和软件工程方面获得的经验将进一步促进参与这项工作的年轻研究人员的职业生涯,获得广泛职业所需的宝贵技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deirdre Shoemaker其他文献
New horizons for fundamental physics with LISA
- DOI:
10.1007/s41114-022-00036-9 - 发表时间:
2022-06-30 - 期刊:
- 影响因子:62.500
- 作者:
K. G. Arun;Enis Belgacem;Robert Benkel;Laura Bernard;Emanuele Berti;Gianfranco Bertone;Marc Besancon;Diego Blas;Christian G. Böhmer;Richard Brito;Gianluca Calcagni;Alejandro Cardenas-Avendaño;Katy Clough;Marco Crisostomi;Valerio De Luca;Daniela Doneva;Stephanie Escoffier;José María Ezquiaga;Pedro G. Ferreira;Pierre Fleury;Stefano Foffa;Gabriele Franciolini;Noemi Frusciante;Juan García-Bellido;Carlos Herdeiro;Thomas Hertog;Tanja Hinderer;Philippe Jetzer;Lucas Lombriser;Elisa Maggio;Michele Maggiore;Michele Mancarella;Andrea Maselli;Sourabh Nampalliwar;David Nichols;Maria Okounkova;Paolo Pani;Vasileios Paschalidis;Alvise Raccanelli;Lisa Randall;Sébastien Renaux-Petel;Antonio Riotto;Milton Ruiz;Alexander Saffer;Mairi Sakellariadou;Ippocratis D. Saltas;B. S. Sathyaprakash;Lijing Shao;Carlos F. Sopuerta;Thomas P. Sotiriou;Nikolaos Stergioulas;Nicola Tamanini;Filippo Vernizzi;Helvi Witek;Kinwah Wu;Kent Yagi;Stoytcho Yazadjiev;Nicolás Yunes;Miguel Zilhão;Niayesh Afshordi;Marie-Christine Angonin;Vishal Baibhav;Enrico Barausse;Tiago Barreiro;Nicola Bartolo;Nicola Bellomo;Ido Ben-Dayan;Eric A. Bergshoeff;Sebastiano Bernuzzi;Daniele Bertacca;Swetha Bhagwat;Béatrice Bonga;Lior M. Burko;Geoffrey Compére;Giulia Cusin;Antonio da Silva;Saurya Das;Claudia de Rham;Kyriakos Destounis;Ema Dimastrogiovanni;Francisco Duque;Richard Easther;Hontas Farmer;Matteo Fasiello;Stanislav Fisenko;Kwinten Fransen;Jörg Frauendiener;Jonathan Gair;László Árpád Gergely;Davide Gerosa;Leonardo Gualtieri;Wen-Biao Han;Aurelien Hees;Thomas Helfer;Jörg Hennig;Alexander C. Jenkins;Eric Kajfasz;Nemanja Kaloper;Vladimír Karas;Bradley J. Kavanagh;Sergei A. Klioner;Savvas M. Koushiappas;Macarena Lagos;Christophe Le Poncin-Lafitte;Francisco S. N. Lobo;Charalampos Markakis;Prado Martín-Moruno;C. J. A. P. Martins;Sabino Matarrese;Daniel R. Mayerson;José P. Mimoso;Johannes Noller;Nelson J. Nunes;Roberto Oliveri;Giorgio Orlando;George Pappas;Igor Pikovski;Luigi Pilo;Jiří Podolský;Geraint Pratten;Tomislav Prokopec;Hong Qi;Saeed Rastgoo;Angelo Ricciardone;Rocco Rollo;Diego Rubiera-Garcia;Olga Sergijenko;Stuart Shapiro;Deirdre Shoemaker;Alessandro Spallicci;Oleksandr Stashko;Leo C. Stein;Gianmassimo Tasinato;Andrew J. Tolley;Elias C. Vagenas;Stefan Vandoren;Daniele Vernieri;Rodrigo Vicente;Toby Wiseman;Valery I. Zhdanov;Miguel Zumalacárregui - 通讯作者:
Miguel Zumalacárregui
Binary black hole evolutions of approximate puncture initial data
近似击穿初始数据的二元黑洞演化
- DOI:
10.1103/physrevd.80.024008 - 发表时间:
2009 - 期刊:
- 影响因子:5
- 作者:
Tanja Bode;Pablo Laguna;Deirdre Shoemaker;I. Hinder;F. Herrmann;Birjoo D. Vaishnav - 通讯作者:
Birjoo D. Vaishnav
Grazing Collisions of Black Holes via the Excision of Singularities
通过奇点切除的黑洞掠碰撞
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Steve Brandt;Randall Correll;R. Gómez;Mijan Huq;Pablo Laguna;Luis Lehner;P. Marronetti;R. Matzner;D. Neilsen;Jorge A. Pullin;E. Schnetter;Deirdre Shoemaker;J. Winicour - 通讯作者:
J. Winicour
Deirdre Shoemaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deirdre Shoemaker', 18)}}的其他基金
Compact Objects and Gravitational Radiation
致密物体和引力辐射
- 批准号:
2207780 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Compact Objects and Gravitational Radiation
致密物体和引力辐射
- 批准号:
2114581 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Compact Objects and Gravitational Radiation
致密物体和引力辐射
- 批准号:
1806580 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Using Numerical Relativity as a Tool for Discovery: Astrophysics, Gravity and Education
职业:使用数值相对论作为发现工具:天体物理学、重力和教育
- 批准号:
0955825 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似海外基金
Compact Objects and Gravitational Radiation
致密物体和引力辐射
- 批准号:
2207780 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Strong-gravity compact objects and fundamental gravity tests in the era of gravitational-wave astronomy
引力波天文学时代的强引力致密天体与基础引力测试
- 批准号:
RGPIN-2018-04207 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
NSF-BSF: Gravitational Waves From Compact Objects at Galactic Nuclei
NSF-BSF:来自星系核致密天体的引力波
- 批准号:
2206428 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Gravitational Wave Data Analysis: Inferring the Properties of Compact Objects and Searching for New Physics
引力波数据分析:推断致密天体的特性并寻找新物理
- 批准号:
2207594 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Dynamics of compact objects in dense star clusters and implications for gravitational wave detections
致密星团中致密天体的动力学及其对引力波探测的影响
- 批准号:
2578841 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Studentship
Strong-gravity compact objects and fundamental gravity tests in the era of gravitational-wave astronomy
引力波天文学时代的强引力致密天体与基础引力测试
- 批准号:
RGPIN-2018-04207 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Compact Objects and Gravitational Radiation
致密物体和引力辐射
- 批准号:
2114581 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Strong-gravity compact objects and fundamental gravity tests in the era of gravitational-wave astronomy
引力波天文学时代的强引力致密天体与基础引力测试
- 批准号:
RGPIN-2018-04207 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Strong-gravity compact objects and fundamental gravity tests in the era of gravitational-wave astronomy
引力波天文学时代的强引力致密天体与基础引力测试
- 批准号:
522495-2018 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Gravitational-Wave Inference from Binary Compact Objects
二元致密天体的引力波推断
- 批准号:
1912648 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant