Physics with New Molecular Systems: Quantum Interactions, Cooling, and Applications

新分子系统物理学:量子相互作用、冷却和应用

基本信息

  • 批准号:
    1505961
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Atoms are the basic building blocks of nature and their behavior is governed by a microscopic theory of matter called quantum mechanics. Our understanding of nearly everything we see in nature relies on quantum mechanics as applied to atoms and their close cousins, molecules (two or more atoms stuck together by a chemical bond). From humans and other living things to computers and the internet, physical systems can be explained only by knowing how atoms and molecules behave in detail. Yet, although quantum mechanics has been very successful in describing very simple atomic systems, we do not yet know how to apply the theory quantitatively to describe all the phenomena that we see. In particular, to invent new technological and biological substances, we need to understand the quantum mechanics of atoms and molecules better. The eventual goal of much of physics (including atomic physics) is to have a complete understanding of all matter and the tools to invent new types of matter. This project is a step toward developing a detailed quantum understanding of the interactions between atoms and molecules in a gas at a very low temperature. When cooled, the quantum nature of atoms and molecules is greatly amplified, exposing its nature to careful study. The essential experimental approach to this work is to use magnetic trapping of atoms and molecules to study their collisions using laser spectroscopy. The technical method will be to use buffer-gas cooling to form a beam of atoms and molecules, which will be optically pumped into magnetically trapped states as they pass through the trapping region. Half the molecules in the beam are originally in the low-field-seeking quantum state. These molecules lose energy as they approach the magnetic field maximum of the trap, where they will be optically pumped into their high-field-seeking state. These molecules then continue to lose energy as they travel toward the trap center. Near the trap center lasers pump the molecules into their trapped state. Only two photons are scattered in this process and this (along with energy loss as the molecules pass through the trap) leads to irreversible trap loading. We will trap molecules of calcium monofluoride and other small molecules into a magnetic trap using this method. Atoms can also be co-loaded with molecules, at high enough density for evaporative cooling. We will co-load lithium and/or potassium atoms and study collisions between them and the trapped molecules, testing molecular theory and investigating a route toward ultracold molecules using sympathetic cooling. Spectroscopy will reveal both the state distribution of the molecules, as well as their number and temperature. Investigation of trap loss can be used to study spin-relaxation collisions (for which there is detailed theory for some atom-molecule pairs). The longer term goal of this work is to enable observation of exchange of energy and other phenomena in increasingly complex atom-molecule collisions, starting with diatomic and triatomic molecules. This will add to our fundamental understanding of nature and help science to design new physical systems and new tools for chemistry and biology.
原子是自然界的基本组成部分,它们的行为受称为量子力学的微观物质理论的支配。我们对自然界中几乎所有事物的理解都依赖于应用于原子及其近亲分子(两个或多个原子通过化学键结合在一起)的量子力学。从人类和其他生物到计算机和互联网,物理系统只能通过了解原子和分子的详细行为来解释。然而,尽管量子力学在描述非常简单的原子系统方面非常成功,但我们还不知道如何定量地应用该理论来描述我们所看到的所有现象。特别是,为了发明新的技术和生物物质,我们需要更好地理解原子和分子的量子力学。大多数物理学(包括原子物理学)的最终目标是完全理解所有物质和发明新型物质的工具。这个项目是朝着发展一个详细的量子理解原子和分子之间的相互作用在一个非常低的温度下的气体。当冷却时,原子和分子的量子性质被极大地放大,使其性质暴露于仔细的研究中。这项工作的基本实验方法是利用原子和分子的磁捕获,利用激光光谱学研究它们的碰撞。技术方法将是使用缓冲气体冷却来形成原子和分子束,当它们通过捕获区域时,这些原子和分子束将被光学泵浦到磁捕获状态。光束中一半的分子最初处于低场寻求量子态。当这些分子接近陷阱的最大磁场时,它们会失去能量,在那里它们将被光学泵浦到它们的高场寻求状态。然后这些分子在向陷阱中心移动时继续损失能量。在陷阱中心附近,激光器将分子泵入它们的陷阱状态。在这个过程中只有两个光子被散射,这(随着分子通过陷阱,沿着能量损失)导致不可逆的陷阱加载。我们将使用这种方法将氟化钙分子和其他小分子捕获到磁阱中。原子也可以与分子共载,密度高到足以进行蒸发冷却。我们将共同加载锂和/或钾原子,并研究它们与被困分子之间的碰撞,测试分子理论,并研究使用交感冷却的超冷分子路线。光谱学将揭示分子的状态分布,以及它们的数量和温度。陷阱损失的研究可以用来研究自旋弛豫碰撞(对于某些原子-分子对有详细的理论)。这项工作的长期目标是能够观察越来越复杂的原子-分子碰撞中的能量交换和其他现象,从双原子和三原子分子开始。这将增加我们对自然的基本理解,并帮助科学设计新的物理系统和化学和生物学的新工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Doyle其他文献

Adaptive Knowledge-Based Monitoring for Information Assurance
基于知识的自适应监控信息保障
  • DOI:
    10.21236/ada399880
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    5
  • 作者:
    John Doyle;I. Kohane;W. Long;Peter Szolovits
  • 通讯作者:
    Peter Szolovits
mu analysis with real parametric uncertainty
具有真实参数不确定性的 mu 分析
Li及びYb原子の同時光トラップ
Li 和 Yb 原子的同时光捕获
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    原秀明;高須洋介;John Doyle;高橋義朗
  • 通讯作者:
    高橋義朗
Agile monitoring for cyber defense
网络防御的敏捷监控
Utility of peripheral blood cultures in patients with cancer and suspected blood stream infections: a systematic review
  • DOI:
    10.1007/s00520-012-1471-2
  • 发表时间:
    2012-04-29
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Laura Rodríguez;Marie-Chantal Ethier;Bob Phillips;Thomas Lehrnbecher;John Doyle;Lillian Sung
  • 通讯作者:
    Lillian Sung

John Doyle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Doyle', 18)}}的其他基金

Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
  • 批准号:
    2302394
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Ultracold Triatomic Molecules
超冷三原子分子
  • 批准号:
    2109995
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
  • 批准号:
    2001486
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
  • 批准号:
    2112697
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Ultracold Triatomic Molecules : Collisions & Cooling
超冷三原子分子:碰撞
  • 批准号:
    1806571
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
NCS-FO: Collaborative Research: Integrative Foundations for Interactions of Complex Neural and Neuro-inspired Systems with Realistic Environments
NCS-FO:协作研究:复杂神经和神经启发系统与现实环境相互作用的综合基础
  • 批准号:
    1735003
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Chiral Molecular Beams, Quantum Tunneling and Improved Microwave Spectroscopy
手性分子束、量子隧道和改进的微波光谱
  • 批准号:
    1506868
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Dynamic Forwarding and Caching for Data-Centric Networks: Theory and Algorithms
NeTS:小型:协作研究:以数据为中心的网络的动态转发和缓存:理论和算法
  • 批准号:
    1423240
  • 财政年份:
    2014
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Physics with New Atomic Systems: Quantum Interactions, Cooling, & Applications
新原子系统物理学:量子相互作用、冷却、
  • 批准号:
    1067990
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
2011 Atomic Physics Gordon Research Conference, June 26-July 1, 2011 at West Dover, VT
2011 年原子物理戈登研究会议,2011 年 6 月 26 日至 7 月 1 日,佛蒙特州西多佛
  • 批准号:
    1115404
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似海外基金

Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Illuminating molecular-level effects in new plant-based nanocomposites for additive manufacturing by stereolithography
职业:通过立体光刻阐明用于增材制造的新型植物基纳米复合材料的分子水平效应
  • 批准号:
    2337946
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Transforming SequenceServer: unlocking new revenue opportunities by incorporating collaborative tools and molecular cloning capabilities
改造 SequenceServer:通过整合协作工具和分子克隆功能释放新的收入机会
  • 批准号:
    10072808
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant for R&D
Study on the molecular processes of brand-new gene origination
全新基因起源的分子过程研究
  • 批准号:
    23K14237
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New molecular shapes from strained aromatic foldamer macrocycles and their application to development of PPI inhibitors
应变芳香折叠大环化合物的新分子形状及其在 PPI 抑制剂开发中的应用
  • 批准号:
    23KK0134
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Identifying New Therapeutics and Molecular Mechanisms in Congenital Disorders of Glycosylation.
确定先天性糖基化疾病的新疗法和分子机制。
  • 批准号:
    10644811
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
Development of new molecular capsules that can fix the guests by twisting
开发新型分子胶囊,可通过扭转来固定客人
  • 批准号:
    23K17928
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
RESEARCH-PGR: Uncover new molecular mechanisms of cyst nematode resistance in wild soybean with systems biology and genome editing
RESEARCH-PGR:通过系统生物学和基因组编辑揭示野生大豆胞囊线虫抗性的新分子机制
  • 批准号:
    2318746
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Magnetization and Electron Spin Dynamics of New Molecular 4f Architectures
新型分子 4f 结构的磁化和电子自旋动力学
  • 批准号:
    2247798
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Polymer-[2]rotaxane molecular shuttles: a new class of non-covalent mechanophore for sensing cell forces
聚合物-[2]轮烷分子梭:用于传感细胞力的新型非共价机械载体
  • 批准号:
    EP/X022803/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了