Sensing, Imaging, Tuning and Creating Nanomaterial Chirality using Liquid Crystal Phases

使用液晶相传感、成像、调谐和创建纳米材料手性

基本信息

  • 批准号:
    1506018
  • 负责人:
  • 金额:
    $ 47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractChirality is a central scientific concept, and best described by the inability to superimpose an object onto its mirror image by translation and rotation. The most common example is our left and right hands. Another example to demonstrate the concept of chirality is the active ingredients in caraway seeds and spearmint. While they have identical molecular structures, the two substances taste differently because they are chiral opposites. Creating and understanding chirality at the nanoscale (more than thousand times smaller than the thickness of a human hair), is critical for the use of materials in optical devices, to engineer materials not found in nature (metamaterials), for the characterization of large, complex biomolecules and to make novel sensors. To understand such chiral nanoscale materials one needs to detect, measure, visualize, and transfer nanoscale chirality. In this project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, the research team uses liquid crystals (commonly used in LCDs) to achieve these goals and to find their applications. Students will experience an interdisciplinary research-oriented environment, utilize state-of-the-art equipment, and become proficient in presenting their research to peers. Students also experience collaborative research by travelling oversees and working with colleagues in Europe. The project features several outreach activities including a scientific symposium and training of high school students from low-income households, hands-on lectures and lab research for high school and undergraduate students. Virtual reality will be also used to explore and visualize chiral nanomaterials. Technical AbstractMetal nanoparticles, or their atomic surfaces, can exhibit chirality by virtue of optical activity in metal-based electronic transitions. This chirality can be realized either by adsorption of chiral organic molecules, or by assembly of otherwise achiral or racemic nanoparticles in chiral environments. Transfer of chirality from an adsorbed molecule to a metal nanoparticle surface depends on the structure of the adsorbate and its interactions with the surrounding. This is often difficult to elucidate, and thus is the key focus of this project. The motivation for this research is to advance recent findings that chirality at the nanoscale is uniquely able to generate more intense responses in soft condensed matter systems such as liquid crystals than their organic molecular chiral counterparts. The research team utilizes several liquid crystal phases and materials as ideal constituents to detect, visualize, and tune chirality of nanoscale particles. To measure, tune, and visualize nanoscale chirality and apply the full potential of chiral nanomaterials, the research team focuses on the synthesis, characterization, and testing of chiral motif-functionalized metal nanoparticles differing in size and shape, and on nanoscale metal patterns functionalized with self-assembled monolayers of potent chiral molecules. The research also offers new prospects in nanoscale chiral induction and chirality transfer from various liquid crystal superstructures to achiral and racemic nanoparticles. Conversely, stabilization and induced optical activity will also be examined in the newly discovered twist-bend nematic phase. Combined, these chiral nanoscale materials serve as viable test platforms for applications ranging from chiral nanoscale sensors and tunable chiral metamaterials to chiral nanoscale inducers, discriminators, and catalysts.
手征性是一个中心的科学概念,最好的描述是不能通过平移和旋转将物体镜像到其镜像上。 最常见的例子是我们的左手和右手。 另一个展示手性概念的例子是香菜种子和留兰香中的活性成分。 虽然它们具有相同的分子结构,但这两种物质的味道不同,因为它们是手性对立面。 在纳米级(比人类头发的厚度小一千倍以上)创建和理解手性,对于在光学设备中使用材料,设计自然界中没有发现的材料(超材料),表征大型复杂生物分子以及制造新型传感器至关重要。 为了理解这种手性纳米材料,需要检测,测量,可视化和转移纳米手性。 在该项目中,由材料研究部门的固态和材料化学计划支持,研究团队使用液晶(通常用于LCD)来实现这些目标并找到它们的应用。 学生将体验到一个跨学科的研究导向的环境,利用国家的最先进的设备,并成为在展示他们的研究同行精通。 学生还通过旅行监督和与欧洲同事合作来体验合作研究。 该项目的特点是开展了几项外联活动,包括科学研讨会和对低收入家庭高中生的培训、为高中生和本科生举办的动手讲座和实验室研究。虚拟现实也将用于探索和可视化手性纳米材料。摘要金属纳米粒子或其原子表面可以通过金属基电子跃迁中的光学活性表现出手性。 这种手性可以通过手性有机分子的吸附或通过在手性环境中组装其他非手性或外消旋纳米颗粒来实现。 手性从吸附分子转移到金属纳米颗粒表面取决于吸附物的结构及其与周围环境的相互作用。这通常很难解释,因此是本项目的重点。 这项研究的动机是推进最近的发现,即纳米级的手性能够在软凝聚态系统(如液晶)中产生比有机分子手性对应物更强烈的响应。 该研究小组利用几种液晶相和材料作为理想成分来检测,可视化和调整纳米颗粒的手性。 为了测量,调整和可视化纳米级手性并应用手性纳米材料的全部潜力,研究小组专注于合成,表征和测试大小和形状不同的手性基序功能化金属纳米颗粒,以及用有效手性分子的自组装单层功能化的纳米级金属图案。 该研究也为纳米手性诱导和手性从各种液晶超结构转移到非手性和外消旋纳米粒子提供了新的前景。 相反,稳定性和诱导的旋光性也将在新发现的扭曲-弯曲双折射阶段进行检查。 结合起来,这些手性纳米材料作为可行的测试平台,从手性纳米传感器和可调手性超材料的应用,手性纳米诱导剂,鉴别剂和催化剂。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Directing the Handedness of Helical Nanofilaments Confined in Nanochannels Using Axially Chiral Binaphthyl Dopants
  • DOI:
    10.1021/acsami.9b20696
  • 发表时间:
    2020-03-18
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Shadpour, Sasan;Nemati, Ahlam;Hegmann, Torsten
  • 通讯作者:
    Hegmann, Torsten
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Torsten Hegmann其他文献

Recollections on Yuriy Reznikov – Personal views and the beginnings of nanoparticle dispersions in liquid crystals
  • DOI:
    10.1016/j.molliq.2017.11.037
  • 发表时间:
    2021-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Torsten Hegmann
  • 通讯作者:
    Torsten Hegmann
Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications

Torsten Hegmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Torsten Hegmann', 18)}}的其他基金

REU Site at Kent State University: Liquid Crystals and Advanced Materials
肯特州立大学 REU 站点:液晶和先进材料
  • 批准号:
    2050873
  • 财政年份:
    2021
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
PFI-RP: A Development of zero-power optical sensor platform for the detection of toxic gases
PFI-RP:用于有毒气体检测的零功率光学传感器平台的开发
  • 批准号:
    2122421
  • 财政年份:
    2021
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an ultrasmall-, small- and wide-angle x-ray scattering instrument for multidisciplinary advanced materials and soft matter research and education
MRI:购买超小型、小型和广角 X 射线散射仪器,用于多学科先进材料和软物质研究和教育
  • 批准号:
    2017845
  • 财政年份:
    2020
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
Quantifying and manipulating chirality and amplification of nanomaterials in liquid crystals
量化和操纵液晶中纳米材料的手性和放大
  • 批准号:
    1904091
  • 财政年份:
    2019
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
GOALI: Ink-jet nanoparticle alignment layers for multi-responsive liquid crystal gas and vapor sensing
GOALI:用于多响应液晶气体和蒸汽传感的喷墨纳米颗粒排列层
  • 批准号:
    1807364
  • 财政年份:
    2018
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
REU Site at Kent State University: Liquid Crystals and Advanced Materials
肯特州立大学 REU 站点:液晶和先进材料
  • 批准号:
    1659571
  • 财政年份:
    2017
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant

相似国自然基金

非小细胞肺癌Biomarker的Imaging MS研究新方法
  • 批准号:
    30672394
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Novel chelators for Scandium-44 in PET imaging of prostate cancer
用于前列腺癌 PET 成像的新型 Scandium-44 螯合剂
  • 批准号:
    2904564
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Studentship
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了