Equation of State for Hydrodynamic Compression in Turbulent Z-Pinch
湍流 Z 箍缩中流体动力压缩的状态方程
基本信息
- 批准号:1506122
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates the speculative possibility of storing energy in turbulent fluid eddies, and then suddenly releasing this energy. When gas is compressed, its temperature increases. However, the increase in temperature might be less if there are other degrees of freedom that absorb the energy. Suppose, for example, that the gas energy resides mainly in whirling eddies, rather than in completely random motion. We ask the question whether there are conditions under which compression of the gas might increase this eddy energy. The significance of this question is that energy in eddies acts differently than random energy because neighboring molecules tend to move in the same direction. That means that there would be fewer times that gas molecules would make high-impact head-on collisions. Important processes such as nuclear fusion depend on this relative motion, so the fusion reactions would be fewer in gases where the energy resides in whirling eddies rather than in random thermal motion. If this were true, then one might also speculate that the effect could be used advantageously in controlling nuclear fusion in a highly compressed plasma. This project investigates the possibility of storing and then suddenly releasing the energy that can be deposited into turbulent fluid eddies in a plasma. It is conjectured that, under compression on a time scale in which viscosity may be neglected, the energy in such eddies might increase. Also, if the energy resides in hydrodynamic eddies rather than ion temperature, it means that it is unavailable to electrons through collisions. Thus, this energy cannot be easily captured by electrons and radiated. If the compression increases eddy energy more than the random energy, a new paradigm for storing energy in a highly compressed plasma might be advanced in which the energy content is increased under compression in a non-radiating plasma, and then suddenly released under viscous dissipation. To test these speculations, particle-in-cell simulations will be performed to describe compressing turbulent eddies, with guidance obtained from Z-pinch experiments that already appear to exhibit certain features of a turbulent inviscid plasma. This work will involve a collaboration between Princeton University and the Weizmann Institute of Science in Israel, and will be performed under the umbrella of the Memorandum of Understanding on Research Cooperation between NSF and the US-Israel Binational Science Foundation. This project is co-sponsored by the NSF's Physics Division and the Office of International Science and Engineering.
这个项目调查了在湍流涡流中储存能量,然后突然释放这种能量的推测可能性。当气体被压缩时,它的温度会升高。然而,如果有其他自由度吸收能量,温度的上升可能会较小。例如,假设气体能量主要存在于旋涡中,而不是完全随机运动。我们提出的问题是,是否存在压缩气体可能会增加涡流能量的条件。这个问题的意义在于,涡流中的能量与随机能量的作用不同,因为相邻的分子往往朝着同一方向移动。这意味着气体分子发生高撞击正面碰撞的次数将会减少。核聚变等重要过程依赖于这种相对运动,因此在能量存在于旋转涡流而不是随机热运动的气体中,聚变反应会更少。如果这是真的,那么人们可能还会推测,这种效应可以有利地用于控制高度压缩的等离子体中的核聚变。这个项目研究了储存能量然后突然释放出来的可能性,这些能量可以沉积在等离子体中的湍流涡流中。据推测,在可以忽略粘性的时间尺度压缩下,这种涡旋的能量可能会增加。此外,如果能量存在于流体动力涡流中,而不是离子温度中,这意味着电子无法通过碰撞获得能量。因此,这种能量不容易被电子捕获和辐射。如果压缩增加的涡动能量大于随机能量,则可能提出一种在高度压缩的等离子体中存储能量的新范式,即在非辐射等离子体中压缩时能量含量增加,然后在粘性耗散下突然释放能量。为了验证这些推测,将进行粒子模拟来描述压缩湍流涡流,从Z-Pinch实验中获得指导,这些实验似乎已经显示出湍流无粘等离子体的某些特征。这项工作将涉及普林斯顿大学和以色列魏茨曼科学研究所之间的合作,并将在美国国家科学基金会和美国-以色列双国科学基金会之间的研究合作谅解备忘录的框架下进行。该项目由美国国家科学基金会物理部和国际科学与工程办公室共同发起。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluid model for the piezothermal effect
压热效应的流体模型
- DOI:10.1016/j.physleta.2020.126700
- 发表时间:2020
- 期刊:
- 影响因子:2.6
- 作者:Kolmes, E.J.;Geyko, V.I.;Fisch, N.J.
- 通讯作者:Fisch, N.J.
Preferential turbulence enhancement in two-dimensional compressions
二维压缩中的优先湍流增强
- DOI:10.1103/physreve.102.053213
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Davidovits, Seth;Fisch, Nathaniel J.
- 通讯作者:Fisch, Nathaniel J.
Heat pump via charge incompressibility in a collisional magnetized multi-ion plasma
通过碰撞磁化多离子等离子体中的电荷不可压缩性实现热泵
- DOI:10.1103/physreve.102.013212
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Mlodik, M. E.;Kolmes, E. J.;Ochs, I. E.;Fisch, N. J.
- 通讯作者:Fisch, N. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel Fisch其他文献
Nathaniel Fisch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel Fisch', 18)}}的其他基金
NSF-BSF: Multi-ion Transport, Rotation, and Turbulence in Hydrodynamic Compression of Z-pinch
NSF-BSF:Z 箍缩流体动力压缩中的多离子输运、旋转和湍流
- 批准号:
2308829 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Identifying Signature of the QED Plasma Regime
识别 QED 等离子体体系的特征
- 批准号:
2206691 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Equation of State for Hydrodynamic Compression in Turbulent Z-pinch
湍流 Z 箍缩中流体动力压缩的状态方程
- 批准号:
1805316 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Electromagnetic Wave Compression in Plasma
等离子体中的电磁波压缩
- 批准号:
1202162 - 财政年份:2012
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
- 批准号:
DP240102728 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Projects
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
- 批准号:
EP/Y007778/1 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Research Grant
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
- 批准号:
EP/Z000254/1 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Research Grant
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
- 批准号:
2335454 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
- 批准号:
2331724 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Cooperative Agreement
EA: Upgrading the Geophysics Computing Facility at Arizona State University
EA:升级亚利桑那州立大学的地球物理计算设施
- 批准号:
2348594 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
REU Site: Sustainable Physics at Penn State: From the Subatomic to the Cosmos
REU 网站:宾夕法尼亚州立大学的可持续物理学:从亚原子到宇宙
- 批准号:
2349159 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
- 批准号:
2339634 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant