Equation of State for Hydrodynamic Compression in Turbulent Z-pinch
湍流 Z 箍缩中流体动力压缩的状态方程
基本信息
- 批准号:1805316
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates the speculative possibility of storing energy in turbulent fluid-like eddies, compressing these eddies so as to further increase the turbulent energy. The significance of this possibility is that energy in eddies acts differently than random energy because neighboring molecules tend to move in the same direction. This possibility can be particularly important in an ionized gas, a plasma. First, plasma can be inviscid on the time scales of compression, such as occurs naturally in certain molecular clouds or, in the laboratory, in Z-pinches, thereby enabling the increase of turbulent energy. Second, there are important processes in plasma, such as radiation or nuclear fusion, whose efficiency is highly dependent on this relative motion. A case in point is the Z-pinch, which is a cylindrical plasma device where current running in the axial direction produces a magnetic field that compresses plasma radially. Recent spectroscopic data taken at the Weizmann Institute of Science suggests that the energy in a Z-pinch can be dominated by the motion of hydrodynamic turbulent eddies.It has been previously shown that self-consistent accounting for the turbulent eddy energy leads to greater consistency in the stagnation Z-pinch data. One aspect of the present project is to use this approach to develop a quasi equation of state for compressing turbulence. It was also predicted that, under compression, plasma abruptly becomes viscous, so that there can be a sudden catastrophic release of the turbulent energy into random ion energy, thereby suddenly enabling processes that rely on thermal motion. Thus, a second aspect of the project is to explore both the ramifications of this curious effect, which occurs in plasma but not neutral gas, as well as to explore how this effect may be affected under a variety of experimental conditions. This work will involve collaboration between Princeton University and the Weizmann Institute of Science in Israel, and will be performed under the umbrella of the Memorandum of Understanding on Research Cooperation between NSF and the US-Israel Binational Science Foundation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了将能量储存在湍流状漩涡中的可能性,压缩这些漩涡以进一步增加湍流能量。 这种可能性的意义在于,涡旋中的能量与随机能量的作用不同,因为相邻的分子倾向于向同一方向移动。 这种可能性在电离气体,等离子体中特别重要。首先,等离子体在压缩的时间尺度上可以是无粘性的,例如在某些分子云中自然发生的,或者在实验室中,在Z箍缩中,从而能够增加湍流能量。 其次,等离子体中有一些重要的过程,如辐射或核聚变,其效率高度依赖于这种相对运动。 一个恰当的例子是Z箍缩,这是一个圆柱形等离子体装置,其中沿轴向方向流动的电流产生径向压缩等离子体的磁场。 最近在魏茨曼科学研究所获得的光谱数据表明,Z箍缩中的能量可以由流体动力学湍流涡的运动所支配。以前已经表明,湍流涡能量的自洽解释导致停滞Z箍缩数据具有更大的一致性。 本项目的一个方面是使用这种方法来发展一个压缩湍流的准状态方程。 也有人预测,在压缩下,等离子体突然变得粘稠,因此可能会有湍流能量突然灾难性地释放成随机离子能量,从而突然启用依赖于热运动的过程。因此,该项目的第二个方面是探索这种奇怪效应的后果,这种效应发生在等离子体中,而不是中性气体中,以及探索这种效应如何在各种实验条件下受到影响。 这项工作将涉及普林斯顿大学和以色列魏茨曼科学研究所之间的合作,并将在NSF和美国-以色列两国科学基金会之间的研究合作谅解备忘录的保护下进行。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trace impurity transport in multi-species plasmas with large particle fluxes
- DOI:10.1016/j.physleta.2021.127284
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:E. Litvinova Mitra;E. Kolmes;I. Ochs;M. Mlodik;T. Rubin;N. Fisch
- 通讯作者:E. Litvinova Mitra;E. Kolmes;I. Ochs;M. Mlodik;T. Rubin;N. Fisch
Temperature screening and cross-field impurity accumulation from a thermodynamic perspective
从热力学角度进行温度筛选和跨场杂质积累
- DOI:10.1016/j.physleta.2022.128298
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Kolmes, E.J.;Ochs, I.E.;Mlodik, M.E.;Fisch, N.J.
- 通讯作者:Fisch, N.J.
Velocity-space compression from Fermi acceleration with Lorentz scattering
洛伦兹散射费米加速的速度空间压缩
- DOI:10.1103/physreve.105.015207
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Waybright, J. C.;Mlodik, M. E.;Fisch, N. J.
- 通讯作者:Fisch, N. J.
Finite-difference multiple fluid solution for source-driven rotation in highly magnetized linear plasma device
高磁化线性等离子体装置中源驱动旋转的有限差分多流体解决方案
- DOI:10.1063/5.0070292
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Rubin, T.;Kolmes, E. J.;Ochs, I. E.;Mlodik, M. E.;Fisch, N. J.
- 通讯作者:Fisch, N. J.
Natural hot-ion modes in a rotating plasma
旋转等离子体中的自然热离子模式
- DOI:10.1103/physreve.104.015209
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Kolmes, E. J.;Ochs, I. E.;Mlodik, M. E.;Fisch, N. J.
- 通讯作者:Fisch, N. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel Fisch其他文献
Nathaniel Fisch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel Fisch', 18)}}的其他基金
NSF-BSF: Multi-ion Transport, Rotation, and Turbulence in Hydrodynamic Compression of Z-pinch
NSF-BSF:Z 箍缩流体动力压缩中的多离子输运、旋转和湍流
- 批准号:
2308829 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Identifying Signature of the QED Plasma Regime
识别 QED 等离子体体系的特征
- 批准号:
2206691 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Equation of State for Hydrodynamic Compression in Turbulent Z-Pinch
湍流 Z 箍缩中流体动力压缩的状态方程
- 批准号:
1506122 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Electromagnetic Wave Compression in Plasma
等离子体中的电磁波压缩
- 批准号:
1202162 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
- 批准号:
DP240102728 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
- 批准号:
EP/Y007778/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
- 批准号:
EP/Z000254/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
- 批准号:
2335454 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
- 批准号:
2331724 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
EA: Upgrading the Geophysics Computing Facility at Arizona State University
EA:升级亚利桑那州立大学的地球物理计算设施
- 批准号:
2348594 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: Sustainable Physics at Penn State: From the Subatomic to the Cosmos
REU 网站:宾夕法尼亚州立大学的可持续物理学:从亚原子到宇宙
- 批准号:
2349159 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
- 批准号:
2339634 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant














{{item.name}}会员




