New Techniques in Birational Geometry

双有理几何新技术

基本信息

  • 批准号:
    1506217
  • 负责人:
  • 金额:
    $ 2.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

The conference "New Techniques in Birational Geometry" will be held in the Department of Mathematics at Stony Brook University on April 7-11, 2015; it will be preceded by a one-day mini-school for graduate students and postdoctoral researchers. The conference is centered around recent advances on the "rationality problem" in algebraic geometry. Algebraic geometry studies systems of polynomial equations -- ubiquitous in mathematics, science, and engineering -- by looking at the geometry of the set of solutions. A system of polynomial equations is called "rational" (respectively "unirational") if there is a polynomial function whose outputs always give solutions of the system, and such that a general solution occurs among the outputs of this function exactly once (respectively only a finite number of times). This property is of great practical value, but unfortunately it is notoriously difficult to tell whether a given system is rational or unirational. The conference will bring together experts to discuss recent progress on this open problem; it will foster interactions between experts in different fields, and it will train young mathematicians in these important techniques. This award supports participation, primarily by junior researchers, in the conference.Specifically, the conference will explore four themes related to rationality questions:(1) Algebraic cycles and Hodge theory(2) Derived categories(3) Bridgeland stability conditions(4) Birational geometryThe conference will feature presentations by leading experts in these areas. Throughout the history of algebraic geometry, the "rationality problem" has been a touchstone, motivating major progress in Hodge theory (the Clemens-Griffiths theorem disproving the Lüroth conjecture), the minimal model program (the Iskovskikh-Manin theorem and Mori's proof of the Hartshorne conjecture), invariant theory (Saltman's negative solution of Noether's problem), and étale cohomology (the Artin-Mumford theorem solving the stable Lüroth problem). Although the problem has many direct applications, its main value has been inspiring new techniques and serving as a point of contact between different areas. There have been major recent advances on the rationality problem in several parts of algebraic geometry, and this is a rare moment of opportunity to bring together researchers with complementary expertise. Indeed, a complete solution, for instance in the case of cubic fourfolds, likely requires multiple approaches, and there are few mathematicians expert in all these areas. There will be a number of activities specifically for junior participants (such as a one-day mini-school introducing some of the topics), and an effort will be made to recruit a diverse body of participants. More details about the conference can be found at its website: http://www.math.sunysb.edu/AlgebraicGeometry/Birational2015/.
会议“双有理几何新技术”将于2015年4月7日至11日在斯托尼布鲁克大学数学系举行;在此之前,将为研究生和博士后研究人员举办为期一天的迷你学校。会议围绕代数几何中“合理性问题”的最新进展展开。代数几何研究多项式方程组-在数学,科学和工程中无处不在-通过观察解集的几何形状。一个多项式方程组被称为“有理”(或“单有理”),如果有一个多项式函数,其输出总是给出系统的解,并且使得通解在这个函数的输出中只出现一次(或仅出现有限次)。这一性质具有很大的实用价值,但不幸的是,很难判断一个给定的系统是理性的还是单理性的。会议将汇集专家讨论这个开放问题的最新进展;它将促进不同领域专家之间的互动,并将培训年轻的数学家掌握这些重要技术。该奖项主要支持初级研究人员参加会议。具体而言,会议将探讨与合理性问题相关的四个主题:(1)代数循环和霍奇理论(2)导出类别(3)Bridgeland稳定条件(4)双有理几何会议将由这些领域的领先专家进行演讲。纵观代数几何的历史,“合理性问题”一直是一块试金石,激发了霍奇理论的重大进展(Clemens-Griffiths theorem disproving the Lüroth conceptual),最小模型程序(Iskovskikh-Manin定理和Mori对哈茨霍恩猜想的证明),不变理论(诺特问题的索特曼负解),和埃塔莱上同调(解决稳定卢罗斯问题的阿廷-芒福德定理)。虽然这个问题有许多直接的应用,但它的主要价值是激发新技术,并作为不同领域之间的联系点。最近在代数几何的几个部分的合理性问题上取得了重大进展,这是一个难得的机会,可以将具有互补专业知识的研究人员聚集在一起。事实上,一个完整的解决方案,例如在三次四重的情况下,可能需要多种方法,并且很少有数学家精通所有这些领域。将有一些专门针对青少年参与者的活动(例如,介绍某些主题的为期一天的小型学校),并将努力招募各种参与者。有关会议的更多详情,请访问其网站:http://www.math.sunysb.edu/AlgebraicGeometry/Birational2015/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christian Schnell其他文献

Primitive cohomology and the tube mapping
  • DOI:
    10.1007/s00209-010-0710-9
  • 发表时间:
    2010-04-13
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Christian Schnell
  • 通讯作者:
    Christian Schnell
Kidney is an important target for the antihypertensive action of an angiotensin II receptor antagonist in spontaneously hypertensive rats.
肾脏是血管紧张素 II 受体拮抗剂在自发性高血压大鼠中发挥抗高血压作用的重要靶点。
  • DOI:
    10.1161/01.hyp.21.6.1056
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    J. Wood;Christian Schnell;Nigel Levens
  • 通讯作者:
    Nigel Levens
Continuous versus intermittent angiotensin converting enzyme inhibition in renal hypertensive rats.
肾高血压大鼠的连续与间歇血管紧张素转换酶抑制。
  • DOI:
    10.1161/01.hyp.22.2.188
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Thierry Battle;Christian Schnell;Bettina Bunkenburg;Didier Heudes;Jeannette M. Wood;Joel M6nard
  • 通讯作者:
    Joel M6nard
Mayana Katz, Ketih Okamoto: Stem cells in modeling human genetic diseases
  • DOI:
    10.1007/s00439-015-1613-y
  • 发表时间:
    2015-11-13
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Christian Schnell
  • 通讯作者:
    Christian Schnell
HODGE MODULES ON COMPLEX TORI AND GENERIC VANISHING FOR COMPACT K
COMPACT K 的复杂环面和通用消失的 HODGE 模块
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahler Manifolds;G. Pareschi;M. Popa;Christian Schnell
  • 通讯作者:
    Christian Schnell

Christian Schnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christian Schnell', 18)}}的其他基金

Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
  • 批准号:
    2301526
  • 财政年份:
    2023
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
  • 批准号:
    1651122
  • 财政年份:
    2017
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
CAREER: Hodge Theory and D-Modules in Algebraic Geometry
职业:代数几何中的 Hodge 理论和 D 模
  • 批准号:
    1551677
  • 财政年份:
    2016
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Continuing Grant
Singular Kahler-Einstein Metrics: Analytic and Algebraic Aspects
奇异卡勒-爱因斯坦度量:分析和代数方面
  • 批准号:
    1510214
  • 财政年份:
    2015
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Holonomic D-modules on abelian varieties
阿贝尔簇的完整 D 模
  • 批准号:
    1404947
  • 财政年份:
    2014
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Continuing Grant
Neron models, singularities of normal functions, and Hodge loci
Neron 模型、正态函数奇点和 Hodge 轨迹
  • 批准号:
    1331641
  • 财政年份:
    2012
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Neron models, singularities of normal functions, and Hodge loci
Neron 模型、正态函数奇点和 Hodge 轨迹
  • 批准号:
    1100606
  • 财政年份:
    2011
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
  • 批准号:
    10087309
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
  • 批准号:
    EP/Y035933/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了