Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
基本信息
- 批准号:2301526
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a project in pure mathematics, more precisely in the field of algebraic geometry. Algebraic geometry studies geometric objects that are defined by polynomial equations, using methods from algebra, complex analysis, differential geometry, topology, and partial differential equations. Algebraic geometry also provides useful examples for certain parts of theoretical physics such as string theory. Most of the research proposed by the PI has to do with a subfield of algebraic geometry called Hodge theory. Hodge theory makes it possible to apply results from the theory of partial differential equations to problems in algebraic geometry, in a language that is closer to algebra than to analysis. Some of the work proposed by the PI is about developing Hodge theory further (and to make it more accessible to graduate students); the rest is about using Hodge theory to solve several very specific problems in algebraic geometry. The PI will also work on a comprehensive book on this subject which will be of enormous use to the research community.More specifically, this project has several different research objectives, all related to Hodge theory:(1) To develop a theory of higher multiplier ideals for effective divisors, in joint work with Ruijie Yang, by using the nearby cycles functor for mixed Hodge modules.(2) To apply this theory to theta divisors on principally polarized abelian varieties, in particular to a conjecture by Casalaina-Martin about the multiplicities of their singular points.(3) To continue to study the local and global structure of the locus of self-dual classes for integral variations of Hodge structure; self-dual classes are a generalization of Hodge classes that are of interest in theoretical physics.(4) To further investigate the behavior of Kodaira dimension under smooth morphisms, especially several related conjectures by Campana-Peternell and by Popa.(5) To continue the study of degenerating complex variations of Hodge structure in higher dimensions, in particular the precise local behavior of the Hodge metric, and its relation with the representation theory of semisimple Lie algebras.(6) To continue the "Mixed Hodge Module Project" (joint with Claude Sabbah), whose aim is to write an accessible treatment of the theory of mixed Hodge modules with complex coefficients.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个纯数学的项目,更准确地说是在代数几何领域。代数几何研究由多项式方程定义的几何对象,使用代数、复分析、微分几何、拓扑学和偏微分方程的方法。代数几何也为理论物理的某些部分,如弦理论,提供了有用的例子。PI提出的大多数研究都与代数几何的一个子领域霍奇理论有关。霍奇理论使得用一种更接近代数而非分析的语言,将偏微分方程理论的结果应用于代数几何问题成为可能。PI提出的一些工作是关于进一步发展霍奇理论(并使其更容易为研究生所接受);剩下的就是用霍奇理论来解决代数几何中的几个非常具体的问题。PI还将编写一本关于这一主题的综合书籍,这将对研究界有巨大的用处。更具体地说,本项目有几个不同的研究目标,都与Hodge理论有关:(1)与杨瑞杰合作,通过使用混合Hodge模块的附近环函数,开发有效因子的更高乘数理想理论。(2)将此理论应用于主极化阿贝尔变体上的因子,特别是Casalaina-Martin关于其奇异点多重性的猜想。(3)继续研究Hodge结构积分变分的自对偶类轨迹的局部和全局结构;自对偶类是霍奇类的一种推广,对理论物理很有兴趣。(4)进一步研究了光滑态射下Kodaira维的行为,特别是Campana-Peternell和Popa的几个相关猜想。(5)继续研究高维Hodge结构的退化复变,特别是Hodge度规的精确局部行为及其与半单李代数表示理论的关系。(6)继续“混合Hodge模块项目”(与Claude Sabbah联合),其目的是编写具有复杂系数的混合Hodge模块理论的易于理解的处理方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Schnell其他文献
Primitive cohomology and the tube mapping
- DOI:
10.1007/s00209-010-0710-9 - 发表时间:
2010-04-13 - 期刊:
- 影响因子:1.000
- 作者:
Christian Schnell - 通讯作者:
Christian Schnell
Kidney is an important target for the antihypertensive action of an angiotensin II receptor antagonist in spontaneously hypertensive rats.
肾脏是血管紧张素 II 受体拮抗剂在自发性高血压大鼠中发挥抗高血压作用的重要靶点。
- DOI:
10.1161/01.hyp.21.6.1056 - 发表时间:
1993 - 期刊:
- 影响因子:8.3
- 作者:
J. Wood;Christian Schnell;Nigel Levens - 通讯作者:
Nigel Levens
Continuous versus intermittent angiotensin converting enzyme inhibition in renal hypertensive rats.
肾高血压大鼠的连续与间歇血管紧张素转换酶抑制。
- DOI:
10.1161/01.hyp.22.2.188 - 发表时间:
1993 - 期刊:
- 影响因子:8.3
- 作者:
Thierry Battle;Christian Schnell;Bettina Bunkenburg;Didier Heudes;Jeannette M. Wood;Joel M6nard - 通讯作者:
Joel M6nard
Mayana Katz, Ketih Okamoto: Stem cells in modeling human genetic diseases
- DOI:
10.1007/s00439-015-1613-y - 发表时间:
2015-11-13 - 期刊:
- 影响因子:3.600
- 作者:
Christian Schnell - 通讯作者:
Christian Schnell
HODGE MODULES ON COMPLEX TORI AND GENERIC VANISHING FOR COMPACT K
COMPACT K 的复杂环面和通用消失的 HODGE 模块
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ahler Manifolds;G. Pareschi;M. Popa;Christian Schnell - 通讯作者:
Christian Schnell
Christian Schnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Schnell', 18)}}的其他基金
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1651122 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Hodge Theory and D-Modules in Algebraic Geometry
职业:代数几何中的 Hodge 理论和 D 模
- 批准号:
1551677 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Singular Kahler-Einstein Metrics: Analytic and Algebraic Aspects
奇异卡勒-爱因斯坦度量:分析和代数方面
- 批准号:
1510214 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Holonomic D-modules on abelian varieties
阿贝尔簇的完整 D 模
- 批准号:
1404947 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Neron models, singularities of normal functions, and Hodge loci
Neron 模型、正态函数奇点和 Hodge 轨迹
- 批准号:
1331641 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Neron models, singularities of normal functions, and Hodge loci
Neron 模型、正态函数奇点和 Hodge 轨迹
- 批准号:
1100606 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Research Infrastructure: CC*Networking Infrastructure: Deep Soil to Supercomputing - Infrastructure Enhancements as a Force Multiplier for Idaho Research
研究基础设施:CC*网络基础设施:从深层到超级计算 - 基础设施增强是爱达荷州研究的力量倍增器
- 批准号:
2346652 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2323398 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
A Study of the Multiplier Spectrum for Rational Maps
有理图乘子谱的研究
- 批准号:
567925-2022 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2048397 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2048390 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2048400 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Lagrange Multiplier Expression Methods for Optimization
优化的拉格朗日乘子表达方法
- 批准号:
2110780 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Phase I: High-performance clock multiplier units
第一阶段:高性能时钟倍频器单元
- 批准号:
560696-2021 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Idea to Innovation
Fiscal Multiplier under Secular Stagnation: A Comparison between the Great Hanshin-Awaji Earthquake and the Great East Japan Earthquake
长期停滞下的财政乘数:阪神淡路大地震与东日本大地震的比较
- 批准号:
20K01706 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fingering flow in the subterranean estuary - A multiplier for the iron curtain and reactive transport processes?
地下河口的指流——铁幕和反应性运输过程的倍增器?
- 批准号:
428293722 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Research Grants