Holonomic D-modules on abelian varieties

阿贝尔簇的完整 D 模

基本信息

  • 批准号:
    1404947
  • 负责人:
  • 金额:
    $ 25.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-15 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Abelian varieties are at the same time algebraic varieties (spaces described by polynomial equations) and abelian groups (sets with an operation that obeys the same laws as addition on the set of whole numbers), and what makes them interesting to a mathematician is the interplay between those two structures. They have been intensively studied since the 19th century, especially in the field of algebraic geometry, but many important questions remain unsolved. This project will take a new approach to some of those questions, by investigating the properties of D-modules on abelian varieties. D-modules are basically systems of partial differential equations, in an abstract form that is useful for studying geometric questions. For example, whenever one has a mapping from another algebraic variety to an abelian variety, one gets a certain number of D-modules on the abelian variety that contain information about the original mapping. The main new idea is that interesting properties of these (and other) D-modules on abelian varieties can be revealed with the help of Fourier analysis, in the same way that interesting properties of signals (such as sound waves) can be revealed by looking at their frequency spectrum. The hope is that a good understanding of the "spectrum" of D-modules on abelian varieties will lead to new results about their geometry.In more technical language, the research objective of the project is to give a complete characterization of Fourier-Mukai transforms of holonomic D-modules on complex abelian varieties. These transforms are complexes of coherent sheaves on the moduli space of line bundles with connection (which is a hyperkaehler manifold), and in many ways, they look remarkably similar to perverse sheaves. This suggests that Fourier-Mukai transforms of holonomic D-modules should make up an as-yet conjectural category of "hyperkaehler perverse sheaves"; the project will make this idea precise and test some of its implications. This question is also of practical interest, because it provides a new tool for solving problems about abelian varieties and irregular varieties, similar to the generic vanishing theorem of Green and Lazarsfeld. A second objective is to make the theory of mixed Hodge modules more widely known. Building on a recent Clay Mathematics Institute workshop, the PI and others plan to write a book about mixed Hodge modules and their applications that will try to make this powerful theory accessible to non-experts.
阿贝尔簇同时也是代数簇(用多项式方程描述的空间)和阿贝尔群(其运算遵循与整数集上的加法相同的规律的集合),而数学家感兴趣的是这两种结构之间的相互作用。自19世纪以来,人们对它们进行了深入的研究,特别是在代数几何领域,但许多重要的问题仍然没有得到解决。这个项目将通过研究交换簇上的D-模的性质,对其中一些问题采取一种新的方法。D-模基本上是偏微分方程组,它是一种抽象形式,对研究几何问题很有用。例如,当一个人有一个从另一个代数簇到一个交换簇的映射时,就会得到该交换簇上的一定数量的D-模,它们包含关于原始映射的信息。主要的新思想是,这些(和其他)阿贝尔变种上的D-模的有趣性质可以通过傅立叶分析来揭示,就像信号(例如声波)的有趣性质可以通过观察它们的频谱来揭示一样。用更专业的语言来描述复杂交换簇上完整D-模的傅里叶-Mukai变换是本课题的研究目标。这些变换是具有连接的线丛(这是一个超Kaehler流形)的模空间上的相干层的复形,在许多方面,它们看起来与倒立的层非常相似。这表明,完整D-模的傅里叶-穆凯变换应该构成一个迄今尚未被猜想的范畴--“Hyperkaehler Perverse Sheet”;该项目将使这一想法变得精确,并测试它的一些含义。这个问题也很有实际意义,因为它为解决交换变元和不规则变元的问题提供了一种新的工具,类似于Green和Lazarsfeld的一般消失定理。第二个目标是使混合霍奇模的理论更广为人知。在最近克莱数学研究所研讨会的基础上,PI和其他人计划写一本关于混合霍奇模块及其应用的书,试图让非专家理解这一强大的理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christian Schnell其他文献

Primitive cohomology and the tube mapping
  • DOI:
    10.1007/s00209-010-0710-9
  • 发表时间:
    2010-04-13
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Christian Schnell
  • 通讯作者:
    Christian Schnell
Kidney is an important target for the antihypertensive action of an angiotensin II receptor antagonist in spontaneously hypertensive rats.
肾脏是血管紧张素 II 受体拮抗剂在自发性高血压大鼠中发挥抗高血压作用的重要靶点。
  • DOI:
    10.1161/01.hyp.21.6.1056
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    J. Wood;Christian Schnell;Nigel Levens
  • 通讯作者:
    Nigel Levens
Continuous versus intermittent angiotensin converting enzyme inhibition in renal hypertensive rats.
肾高血压大鼠的连续与间歇血管紧张素转换酶抑制。
  • DOI:
    10.1161/01.hyp.22.2.188
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Thierry Battle;Christian Schnell;Bettina Bunkenburg;Didier Heudes;Jeannette M. Wood;Joel M6nard
  • 通讯作者:
    Joel M6nard
Mayana Katz, Ketih Okamoto: Stem cells in modeling human genetic diseases
  • DOI:
    10.1007/s00439-015-1613-y
  • 发表时间:
    2015-11-13
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Christian Schnell
  • 通讯作者:
    Christian Schnell
HODGE MODULES ON COMPLEX TORI AND GENERIC VANISHING FOR COMPACT K
COMPACT K 的复杂环面和通用消失的 HODGE 模块
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahler Manifolds;G. Pareschi;M. Popa;Christian Schnell
  • 通讯作者:
    Christian Schnell

Christian Schnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christian Schnell', 18)}}的其他基金

Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
  • 批准号:
    2301526
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
  • 批准号:
    1651122
  • 财政年份:
    2017
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant
CAREER: Hodge Theory and D-Modules in Algebraic Geometry
职业:代数几何中的 Hodge 理论和 D 模
  • 批准号:
    1551677
  • 财政年份:
    2016
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Continuing Grant
Singular Kahler-Einstein Metrics: Analytic and Algebraic Aspects
奇异卡勒-爱因斯坦度量:分析和代数方面
  • 批准号:
    1510214
  • 财政年份:
    2015
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant
New Techniques in Birational Geometry
双有理几何新技术
  • 批准号:
    1506217
  • 财政年份:
    2015
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant
Neron models, singularities of normal functions, and Hodge loci
Neron 模型、正态函数奇点和 Hodge 轨迹
  • 批准号:
    1331641
  • 财政年份:
    2012
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant
Neron models, singularities of normal functions, and Hodge loci
Neron 模型、正态函数奇点和 Hodge 轨迹
  • 批准号:
    1100606
  • 财政年份:
    2011
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant

相似海外基金

Holonomic D-Modules on Abelian Varieties
阿贝尔簇的完整 D 模
  • 批准号:
    269346902
  • 财政年份:
    2015
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Research Fellowships
Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
  • 批准号:
    16540135
  • 财政年份:
    2004
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modules over Noethrian rings and Abelian Groups
诺特环和阿贝尔群上的模
  • 批准号:
    15540031
  • 财政年份:
    2003
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
  • 批准号:
    13640149
  • 财政年份:
    2001
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on duality theorems of modules on fans
风扇模块对偶定理研究
  • 批准号:
    12640006
  • 财政年份:
    2000
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
可換Banach環及びBanach modulesの分類
交换Banach环和Banach模的分类
  • 批准号:
    07640163
  • 财政年份:
    1995
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Mathematical Sciences: Abelian Groups and Modules Over Commutative Domains
数学科学:交换域上的阿贝尔群和模
  • 批准号:
    9001187
  • 财政年份:
    1990
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Abelian Groups and Modules over Commutative Domains
数学科学:交换域上的阿贝尔群和模
  • 批准号:
    8620379
  • 财政年份:
    1987
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Group Travel to an International Conference on Abelian Groups and Modules; Udine, Italy, April 9 - 14, 1984
数学科学:参加阿贝尔群和模国际会议的团体旅行;
  • 批准号:
    8411468
  • 财政年份:
    1984
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant
Abelian Groups and Modules Over Valuation Rings
评估环上的阿贝尔群和模
  • 批准号:
    8101574
  • 财政年份:
    1981
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了