AIS: Entanglement of Approximate Dynamic Programming and Modern Nonlinear Control for Complex Systems

AIS:复杂系统的近似动态规划与现代非线性控制的纠缠

基本信息

  • 批准号:
    1101401
  • 负责人:
  • 金额:
    $ 28.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to develop a new framework for robust adaptive/approximate dynamic programming to address grand challenges arising from engineering and biology, such as smart grid, brain research, robotics, and flight control. The approach is to take explicit advantages of versatile techniques from two active areas of research in reinforcement learning systems and neural networks and in modern nonlinear control.Intellectual MeritThis interdisciplinary research initiative, driven by the need in building brain-like reinforcement learning systems and in understanding ultimately the brain function, is significant in different aspects. It will significantly advance the state of the art on approximate dynamic programming and address the truly model-free situation. In addition, instead of building exact mathematical models, which often is very hard, if not impossible, for contemporary complex problems arising from engineering and biology, this proposal adopts a novel interconnected system viewpoint on the basis of the PI?s work on nonlinear small-gain theory. Broader ImpactsThe proposed work will lead to the development of new tools for robust adaptive critic designs in interconnected complex systems. Not only these tools are expected to find applications in emerging engineering applications such as smart grid, robotics and flight control, but also they will help gain a deeper insight toward the long-term goal in understanding brain functions and building brain-like reinforcement learning engineering systems. The proposed research will have a substantial direct impact upon education at the PI's institution by engaging students from several areas and departments.
本研究的目标是开发一个新的框架,强大的自适应/近似动态规划,以解决工程和生物学,如智能电网,大脑研究,机器人和飞行控制所带来的巨大挑战。该方法是采取明确的优势,从两个活跃的研究领域,在强化学习系统和神经网络和现代非线性控制的多功能技术。智力MeritThis跨学科的研究倡议,需要在建设类脑强化学习系统,并最终在理解大脑的功能,是在不同的方面显着。它将大大推进近似动态规划的最新技术水平,并解决真正的无模型情况。此外,而不是建立精确的数学模型,这往往是非常困难的,如果不是不可能的,为当代复杂的问题所产生的工程和生物学,该建议采用了一种新的互联系统的观点的基础上PI?的非线性小增益理论的工作。更广泛的影响拟议的工作将导致强大的自适应批评设计在互联复杂系统的新工具的发展。这些工具不仅有望在智能电网、机器人和飞行控制等新兴工程应用中找到应用,而且还将有助于更深入地了解了解大脑功能和构建类脑强化学习工程系统的长期目标。拟议的研究将通过吸引来自多个领域和部门的学生,对PI机构的教育产生重大的直接影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhong-Ping Jiang其他文献

Hierarchical fusion of optical and dual-polarized SAR on impervious surface mapping at city scale
光学和双偏振 SAR 的分层融合在城市尺度不透水表面测绘上的应用
Agallolides A-M, including two rearranged ent-atisanes featuring a bicyclo[3.2.1]octane motif, from the Chinese Excoecaria agallocha
Agallolides A-M,包括两个重排的 ent-atisane,具有双环[3.2.1]辛烷基序,来自中国 Excoecaria agallocha
  • DOI:
    10.1016/j.bioorg.2020.104206
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Zhong-Ping Jiang;Yi Yu;Li Shen
  • 通讯作者:
    Li Shen
Distributed Global Output-Feedback Control for a Class of Euler–Lagrange Systems
一类欧拉-拉格朗日系统的分布式全局输出反馈控制
  • DOI:
    10.1109/tac.2017.2696705
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Qingkai Yang;Hao Fang;Jie Chen;Zhong-Ping Jiang;Ming Cao
  • 通讯作者:
    Ming Cao
A Small-Gain Approach to Robust Event-Triggered Control of Nonlinear Systems
非线性系统鲁棒事件触发控制的小增益方法
Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
用于遥感图像超分辨率的多注意生成对抗网络

Zhong-Ping Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhong-Ping Jiang', 18)}}的其他基金

Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
  • 批准号:
    2227153
  • 财政年份:
    2022
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
  • 批准号:
    2210320
  • 财政年份:
    2022
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
  • 批准号:
    2009644
  • 财政年份:
    2020
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Learning-based Adaptive Optimal Control Principles for Human Movements
基于学习的人体运动自适应最优控制原理
  • 批准号:
    1903781
  • 财政年份:
    2019
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Biologically-Inspired Robust Adaptive Dynamic Programming for Continuous-Time Stochastic Systems
连续时间随机系统的受生物学启发的鲁棒自适应动态规划
  • 批准号:
    1501044
  • 财政年份:
    2015
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Hybrid Small-Gain Theorems for Nonlinear Networked and Quantized Control Systems
合作研究:非线性网络和量化控制系统的混合小增益定理
  • 批准号:
    1230040
  • 财政年份:
    2012
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Collaborative Research: New Tools for Nonlinear Control Systems Analysis and Synthesis
合作研究:非线性控制系统分析与综合的新工具
  • 批准号:
    0906659
  • 财政年份:
    2009
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Nonlinear Ship Control: An Opportunity for Applied Mathematicians
非线性船舶控制:应用数学家的机会
  • 批准号:
    0504462
  • 财政年份:
    2005
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research: Control of complex nonlinear systems with applications
中美合作研究:复杂非线性系统控制及其应用
  • 批准号:
    0408925
  • 财政年份:
    2004
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
CAREER: Robust Nonlinear Control: Problems and Challenges from Communication Networks
职业:鲁棒非线性控制:通信网络的问题和挑战
  • 批准号:
    0093176
  • 财政年份:
    2001
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Standard Grant
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on CARS enhancement with quantum entanglement aiming at noninvasive glucose monitoring
针对无创血糖监测的量子纠缠CARS增强研究
  • 批准号:
    23K19224
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel optomechanical entanglement
新型光机纠缠
  • 批准号:
    23KF0087
  • 财政年份:
    2023
  • 资助金额:
    $ 28.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了