Measuring Gravity at the Micron Scale with Laser-Cooled Trapped Microspheres: a Continuation Proposal
使用激光冷却捕获微球测量微米级重力:延续提案
基本信息
- 批准号:1506431
- 负责人:
- 金额:$ 39.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gravity is the least understood fundamental force of nature: there is a 16 order of magnitude disparity between the energy scale of quantum gravity and that of the electromagnetic and nuclear forces. The mystery can be cast in another way: why is gravity so much weaker? As a number of recent theories have suggested, important clues related to this "hierarchy problem" can be obtained by measuring how gravity behaves at sub-millimeter distances. Such measurements could lead to exciting new discoveries of physics beyond our current knowledge. However, the gravitational force between massive objects becomes weak very rapidly as their size and separation distance changes, thus making ultra-sensitive measurements a necessity at sub-millimeter length scales. This group is developing an experiment based on new technology which could advance our understanding of gravity by several orders of magnitude at the micrometer length scale. In this approach, a test mass is suspended in a "container" made of light, leading to greatly reduced friction and enhanced sensitivity. This research program is at the forefront of current knowledge and will enhance the scientific competency of the state of Nevada, which is currently under-represented in terms of scientific endeavor. The collaboration with researchers at Stanford and the NSF-sponsored Stanford Nanofabrication facility will improve the research infrastructure for the state, opening new pathways for future collaborations involving nanotechnology. Students and postdoctoral researchers will be broadly trained in experimental physics and nanofabrication and will be well positioned for entry into the scientific workforce. The fundamental nature of this project appeals to our sense of wonder about the natural world. The nation will benefit from an improved understanding of high-energy physics related to gravitational physics at the micron-length scale, at a fraction of the cost of particle-collider experiments.This award supports work on an experiment with the goal of using laser-cooled trapped microspheres to test for Yukawa-type deviations from Newtonian gravity at the micron length scale. By optically levitating the force sensor, an exquisite decoupling from the environment is possible, potentially yielding sub-attonewton force sensitivity. This new technique could ultimately advance our understanding of gravity at the micron length scale by a factor of 100,000 or more, probing deep into the parameter space for theoretically predicted deviations from Newtonian gravity. In addition to studies of short-range gravitational forces, the experimental technique we propose could also enable novel investigations of Casimir forces in unexplored regimes. The project is conceptually divided into three tasks: (1) calibration and optimization of the force sensitivity of the trapped cooled microspheres, (2) final assembly of the source mass and its driving mechanism, (3) investigation of systematic errors in preliminary gravity measurements. We will also investigate novel methods for cooling the levitated nanospheres, involving sympathetic cooling with cold atoms. A graduate physics course "Hybrid Quantum Systems" will be developed to complement and augment the proposed research, leading to new ideas and opportunities for advancing science, while developing students' breadth and expertise in STEM topics. This award is supported by the Gravitational Physics and the Atomic, Molecular and Optical Physics programs.
引力是自然界最不为人所知的基本力:量子引力的能量尺度与电磁力和核力的能量尺度之间存在16个数量级的差距。这个谜团可以用另一种方式来解释:为什么引力要弱得多?正如许多最近的理论所提出的那样,与这个“层次问题”相关的重要线索可以通过测量引力在亚毫米距离上的行为来获得。这样的测量可能会导致超出我们现有知识的令人兴奋的物理学新发现。然而,随着大质量物体的大小和分离距离的变化,它们之间的引力会迅速减弱,因此需要在亚毫米尺度上进行超灵敏的测量。这个小组正在开发一项基于新技术的实验,该实验可以将我们对重力的理解在微米长度尺度上提高几个数量级。在这种方法中,测试质量悬浮在由光制成的“容器”中,从而大大减少了摩擦并提高了灵敏度。该研究项目处于当前知识的前沿,将提高内华达州的科学能力,目前内华达州在科学努力方面的代表性不足。与斯坦福大学的研究人员和nsf赞助的斯坦福纳米制造设施的合作将改善该州的研究基础设施,为未来涉及纳米技术的合作开辟新的途径。学生和博士后研究人员将在实验物理和纳米制造方面接受广泛的培训,并将为进入科学队伍做好准备。这个项目的基本性质吸引了我们对自然世界的好奇感。这个国家将受益于在微米尺度上对与引力物理相关的高能物理的更好理解,而成本只是粒子对撞机实验的一小部分。该奖项支持一项实验的工作,该实验的目标是使用激光冷却的捕获微球来测试微米尺度上牛顿引力的汤川型偏差。通过光学悬浮力传感器,与环境的完美解耦成为可能,潜在地产生亚牛顿力灵敏度。这项新技术最终将使我们对微米尺度的引力的理解提高10万倍或更多,深入探测参数空间,寻找理论上预测的与牛顿引力的偏差。除了研究短程引力外,我们提出的实验技术还可以在未开发的区域中对卡西米尔力进行新的研究。该项目在概念上分为三个任务:(1)标定和优化捕获冷却微球的力灵敏度;(2)最终组装源质量及其驱动机制;(3)初步重力测量的系统误差研究。我们还将研究冷却悬浮纳米球的新方法,包括冷原子的交感冷却。将开设研究生物理课程“混合量子系统”,以补充和增强拟议的研究,为推进科学提供新思路和机会,同时培养学生在STEM主题方面的广度和专业知识。该奖项由引力物理学和原子、分子和光学物理学项目支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Geraci其他文献
Optimization of High-Sensitivity SQUID Gradiometer for ARIADNE at CAPP
- DOI:
10.1007/s10909-024-03152-8 - 发表时间:
2024-05-22 - 期刊:
- 影响因子:1.400
- 作者:
Violeta Gkika;Younggeun Kim;Andrei Matlashov;Yun Chang Shin;Yannis Semertzidis;Robin Cantor;Chloe Lohmeyer;Nancy Aggarwal;Andrew Geraci - 通讯作者:
Andrew Geraci
Cold atoms in space: community workshop summary and proposed road-map
- DOI:
10.1140/epjqt/s40507-022-00147-w - 发表时间:
2022-11-20 - 期刊:
- 影响因子:5.600
- 作者:
Iván Alonso;Cristiano Alpigiani;Brett Altschul;Henrique Araújo;Gianluigi Arduini;Jan Arlt;Leonardo Badurina;Antun Balaž;Satvika Bandarupally;Barry C. Barish;Michele Barone;Michele Barsanti;Steven Bass;Angelo Bassi;Baptiste Battelier;Charles F. A. Baynham;Quentin Beaufils;Aleksandar Belić;Joel Bergé;Jose Bernabeu;Andrea Bertoldi;Robert Bingham;Sébastien Bize;Diego Blas;Kai Bongs;Philippe Bouyer;Carla Braitenberg;Christian Brand;Claus Braxmaier;Alexandre Bresson;Oliver Buchmueller;Dmitry Budker;Luís Bugalho;Sergey Burdin;Luigi Cacciapuoti;Simone Callegari;Xavier Calmet;Davide Calonico;Benjamin Canuel;Laurentiu-Ioan Caramete;Olivier Carraz;Donatella Cassettari;Pratik Chakraborty;Swapan Chattopadhyay;Upasna Chauhan;Xuzong Chen;Yu-Ao Chen;Maria Luisa Chiofalo;Jonathon Coleman;Robin Corgier;J. P. Cotter;A. Michael Cruise;Yanou Cui;Gavin Davies;Albert De Roeck;Marcel Demarteau;Andrei Derevianko;Marco Di Clemente;Goran S. Djordjevic;Sandro Donadi;Olivier Doré;Peter Dornan;Michael Doser;Giannis Drougakis;Jacob Dunningham;Sajan Easo;Joshua Eby;Gedminas Elertas;John Ellis;David Evans;Pandora Examilioti;Pavel Fadeev;Mattia Fanì;Farida Fassi;Marco Fattori;Michael A. Fedderke;Daniel Felea;Chen-Hao Feng;Jorge Ferreras;Robert Flack;Victor V. Flambaum;René Forsberg;Mark Fromhold;Naceur Gaaloul;Barry M. Garraway;Maria Georgousi;Andrew Geraci;Kurt Gibble;Valerie Gibson;Patrick Gill;Gian F. Giudice;Jon Goldwin;Oliver Gould;Oleg Grachov;Peter W. Graham;Dario Grasso;Paul F. Griffin;Christine Guerlin;Mustafa Gündoğan;Ratnesh K. Gupta;Martin Haehnelt;Ekim T. Hanımeli;Leonie Hawkins;Aurélien Hees;Victoria A. Henderson;Waldemar Herr;Sven Herrmann;Thomas Hird;Richard Hobson;Vincent Hock;Jason M. Hogan;Bodil Holst;Michael Holynski;Ulf Israelsson;Peter Jeglič;Philippe Jetzer;Gediminas Juzeliūnas;Rainer Kaltenbaek;Jernej F. Kamenik;Alex Kehagias;Teodora Kirova;Marton Kiss-Toth;Sebastian Koke;Shimon Kolkowitz;Georgy Kornakov;Tim Kovachy;Markus Krutzik;Mukesh Kumar;Pradeep Kumar;Claus Lämmerzahl;Greg Landsberg;Christophe Le Poncin-Lafitte;David R. Leibrandt;Thomas Lévèque;Marek Lewicki;Rui Li;Anna Lipniacka;Christian Lisdat;Mia Liu;J. L. Lopez-Gonzalez;Sina Loriani;Jorma Louko;Giuseppe Gaetano Luciano;Nathan Lundblad;Steve Maddox;M. A. Mahmoud;Azadeh Maleknejad;John March-Russell;Didier Massonnet;Christopher McCabe;Matthias Meister;Tadej Mežnaršič;Salvatore Micalizio;Federica Migliaccio;Peter Millington;Milan Milosevic;Jeremiah Mitchell;Gavin W. Morley;Jürgen Müller;Eamonn Murphy;Özgür E. Müstecaplıoğlu;Val O’Shea;Daniel K. L. Oi;Judith Olson;Debapriya Pal;Dimitris G. Papazoglou;Elizabeth Pasatembou;Mauro Paternostro;Krzysztof Pawlowski;Emanuele Pelucchi;Franck Pereira dos Santos;Achim Peters;Igor Pikovski;Apostolos Pilaftsis;Alexandra Pinto;Marco Prevedelli;Vishnupriya Puthiya-Veettil;John Quenby;Johann Rafelski;Ernst M. Rasel;Cornelis Ravensbergen;Mirko Reguzzoni;Andrea Richaud;Isabelle Riou;Markus Rothacher;Albert Roura;Andreas Ruschhaupt;Dylan O. Sabulsky;Marianna Safronova;Ippocratis D. Saltas;Leonardo Salvi;Muhammed Sameed;Pandey Saurabh;Stefan Schäffer;Stephan Schiller;Manuel Schilling;Vladimir Schkolnik;Dennis Schlippert;Piet O. Schmidt;Harald Schnatz;Jean Schneider;Ulrich Schneider;Florian Schreck;Christian Schubert;Armin Shayeghi;Nathaniel Sherrill;Ian Shipsey;Carla Signorini;Rajeev Singh;Yeshpal Singh;Constantinos Skordis;Augusto Smerzi;Carlos F. Sopuerta;Fiodor Sorrentino;Paraskevas Sphicas;Yevgeny V. Stadnik;Petruta Stefanescu;Marco G. Tarallo;Silvia Tentindo;Guglielmo M. Tino;Jonathan N. Tinsley;Vincenza Tornatore;Philipp Treutlein;Andrea Trombettoni;Yu-Dai Tsai;Philip Tuckey;Melissa A. Uchida;Tristan Valenzuela;Mathias Van Den Bossche;Ville Vaskonen;Gunjan Verma;Flavio Vetrano;Christian Vogt;Wolf von Klitzing;Pierre Waller;Reinhold Walser;Eric Wille;Jason Williams;Patrick Windpassinger;Ulrich Wittrock;Peter Wolf;Marian Woltmann;Lisa Wörner;André Xuereb;Mohamed Yahia;Efe Yazgan;Nan Yu;Nassim Zahzam;Emmanuel Zambrini Cruzeiro;Mingsheng Zhan;Xinhao Zou;Jure Zupan;Erik Zupanič - 通讯作者:
Erik Zupanič
Levitating the fridge
悬浮冰箱
- DOI:
10.1038/s41566-017-0014-2 - 发表时间:
2017-09-29 - 期刊:
- 影响因子:32.900
- 作者:
Andrew Geraci - 通讯作者:
Andrew Geraci
Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies
- DOI:
10.1007/s41114-021-00032-5 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:62.500
- 作者:
Nancy Aggarwal;Odylio D. Aguiar;Andreas Bauswein;Giancarlo Cella;Sebastian Clesse;Adrian Michael Cruise;Valerie Domcke;Daniel G. Figueroa;Andrew Geraci;Maxim Goryachev;Hartmut Grote;Mark Hindmarsh;Francesco Muia;Nikhil Mukund;David Ottaway;Marco Peloso;Fernando Quevedo;Angelo Ricciardone;Jessica Steinlechner;Sebastian Steinlechner;Sichun Sun;Michael E. Tobar;Francisco Torrenti;Caner Ünal;Graham White - 通讯作者:
Graham White
Andrew Geraci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Geraci', 18)}}的其他基金
PM: Measuring Gravity at the Micron-Scale with Laser-Cooled Trapped Microspheres: A Renewal Proposal
PM:用激光冷却捕获微球测量微米级重力:更新提案
- 批准号:
2110524 - 财政年份:2021
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
Collaborative Research: Axion Resonant InterAction Detection Experiment (ARIADNE) - a Renewal Proposal
合作研究:轴子共振相互作用检测实验(ARIADNE)——更新提案
- 批准号:
2111544 - 财政年份:2021
- 资助金额:
$ 39.23万 - 项目类别:
Continuing Grant
Collaborative Research: Axion Resonant InterAction DetectioN Experiment (ARIADNE)
合作研究:轴子共振相互作用检测实验(ARIADNE)
- 批准号:
1826505 - 财政年份:2018
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
Collaborative Research: Axion Resonant InterAction DetectioN Experiment (ARIADNE) - a Continuation Proposal
合作研究:轴子共振相互作用检测实验(ARIADNE)——一项延续提案
- 批准号:
1806671 - 财政年份:2018
- 资助金额:
$ 39.23万 - 项目类别:
Continuing Grant
Measuring Gravity at the Micron Scale with Laser-Cooled Trapped Microspheres: a Continuation
使用激光冷却捕获微球测量微米级重力:延续
- 批准号:
1806686 - 财政年份:2018
- 资助金额:
$ 39.23万 - 项目类别:
Continuing Grant
Collaborative Research: Axion Resonant InterAction DetectioN Experiment (ARIADNE)
合作研究:轴子共振相互作用检测实验(ARIADNE)
- 批准号:
1509805 - 财政年份:2016
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
Measuring Gravity at the Micron Scale with Laser-Cooled Trapped Microspheres
使用激光冷却捕获微球测量微米级重力
- 批准号:
1205994 - 财政年份:2012
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
- 批准号:
DP240102399 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Discovery Projects
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Research Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
- 批准号:
2334171 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Continuing Grant
Gravity Cartography Catalyst
重力制图催化剂
- 批准号:
10107128 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Small Business Research Initiative
SBIR Phase I: Artificial Gravity Stabilization System for Space Habitats
SBIR 第一阶段:太空栖息地人工重力稳定系统
- 批准号:
2335173 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
- 批准号:
DP240101409 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Discovery Projects
S-TGG: A novel Tidal Gravity Generator for renewable, shoreside energy in ports and harbours with high efficiency and low environmental impact
S-TGG:一种新型潮汐重力发生器,用于港口和港口的可再生岸边能源,效率高,环境影响低
- 批准号:
10092293 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Collaborative R&D
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
- 批准号:
2907441 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Studentship
CAREER: Towards realistic halo-scale constraints on the nature of dark matter and gravity
职业:对暗物质和引力的性质进行现实的晕尺度限制
- 批准号:
2338388 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Continuing Grant
CAREER: Investigating the impacts of sea breeze and steep surface gravity waves on nearshore air-sea fluxes
职业:研究海风和陡峭的表面重力波对近岸海气通量的影响
- 批准号:
2340712 - 财政年份:2024
- 资助金额:
$ 39.23万 - 项目类别:
Continuing Grant














{{item.name}}会员




