Order-by-frustration: emergent condensed states of frustrated magnets

按挫败排序:挫败磁体的紧急凝聚态

基本信息

  • 批准号:
    1507054
  • 负责人:
  • 金额:
    $ 30.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYThis award supports theoretical research and education on new states of magnetic insulators, in which there is a competition between different kinds of interactions between localized spins, the microscopic magnetic components that contain electrons orbiting around atomic nuclei. The interactions between spins can drive them into magnetically ordered states, such as ferromagnetism, in which the spins of the electrons are aligned along the same common axis, or anti-ferromagnetism, in which neighboring spins point in opposite directions. The focus of this research is on a wide class of materials in which magnetic order appears to be altogether absent as a consequence of competing interactions between spins. However, closer examination reveals a kind of "hidden" order, in which not the individual spins but rather small groups of them are correlated over large distances far exceeding the typical size of a small group of spins. These types of order are known as multi-polar, and this project is devoted to classifying and understanding their static and dynamic properties, as well as understanding the conditions necessary for their realization. This research advances fundamental understanding of quantum mechanics and magnetism, particularly in materials with different competing magnetic interactions. It may contribute to the discovery of new states of electronic matter within a wide range materials that may have technological application. This award also supports graduate students in theoretical solid state physics. Students involved in the research will be trained in modern theoretical techniques. In addition, the PI is planning to organize a department-wide Physics Olympiad for undergraduate students. The Olympiad will consist of a set of short but non-trivial problems which requires good understanding of general physics to solve. Its purpose is to promote student interest in physics, to identify particularly talented students and to provide them with early contacts with professional researchers.TECHNICAL SUMMARYThis award supports theoretical investigation and education focused on frustrated magnetic materials with unusual multi-particle condensates as well as on systems with "hidden" frustration which emerges due to strong and mutually competing spin-orbital interactions.The research brings together several outstanding topics of condensed matter physics - the multiplicity of competing orders in correlated systems, quantum phase transitions among them, and identification of the mechanism behind the appearance of "hidden" orders.Unlike the well-understood case of the usual, single particle, Bose condensates, the two (or more)- particle condensates are characterized by short-ranged spin correlations and unusual nematic-type order parameters. The case in point is represented by a frustrated ferromagnet, the phase diagram of which is controlled by a quantum critical point of Lifshitz type with dynamical critical exponent z=4. The PI proposes to construct a field theory description of this critical point, and to investigate the conditions needed for the emergence of multi-polar spin-nematic phases. In the course of this study the PI intends to explore analogies between boson systems with two-magnon condensates and fermion superconductors or charge density waves.Metallic frustrated magnets, in which itinerant electrons are exchange-coupled to localized spins, constitute another major research direction which the PI intends to pursue. These materials allow for the interesting possibility of probing magnetic phases and transitions via electron transport measurements. The PI plans to theoretically analyze the resistivity of a magnet undergoing a magnon Bose-Einstein condensation transition, and also to extend this analysis to novel experimental systems with topologically non-trivial band structures.The theory developed here will be applied to real magnetic materials. By combining a field theory approach with a semi-classical spin wave expansion, the PI plans to describe the physics of the recently discovered one-third magnetization plateau in the kagome material volborthite, and to analyze its possible instabilities. The PI will also study novel spin-chain insulators with competing spin-orbit interactions, which, by forcing opposite helical correlations in the neighboring chains, effectively promote an Ising-like longitudinal spin-density wave state that is an insulating analogue of a charge-density wave order in itinerant electron systems.This award will support graduate students in theoretical solid state physics. Students involved in the research will be trained in modern theoretical techniques such as bosonization, renormalization group, quantum field and diagrammatic many-body theories. In addition, the PI is planning to organize a department-wide Physics Olympiad for undergraduate students. The Olympiad will consist of a set of short but non-trivial problems which requires good understanding of general physics to solve. Its purpose is to promote student interest in physics, to identify particularly talented students and provide them with early contacts with professional researchers.
非技术总结该奖项支持对磁绝缘体新状态的理论研究和教育,其中局部自旋之间的不同类型的相互作用之间存在竞争,微观磁性成分包含围绕原子核轨道运行的电子。自旋之间的相互作用可以驱动它们进入磁有序状态,例如铁磁性,其中电子的自旋沿着相同的公共轴对齐,或反铁磁性,其中相邻的自旋指向相反的方向。这项研究的重点是广泛的一类材料,其中磁序似乎是完全缺乏的结果之间的相互作用的竞争自旋。然而,更仔细的研究揭示了一种“隐藏”的顺序,其中不是单个自旋,而是一小群自旋在远超过一小群自旋的典型大小的大距离上相关。这些类型的秩序被称为多极,本项目致力于分类和理解其静态和动态特性,以及理解其实现所需的条件。这项研究推进了对量子力学和磁性的基本理解,特别是在具有不同竞争磁性相互作用的材料中。它可能有助于在可能具有技术应用的广泛材料中发现电子物质的新状态。该奖项还支持理论固态物理学的研究生。参与研究的学生将接受现代理论技术的培训。此外,PI正计划为本科生组织一个全系的物理奥林匹克竞赛。奥林匹克竞赛将包括一组简短但不平凡的问题,需要对普通物理有很好的理解才能解决。其目的是促进学生对物理的兴趣,该奖项支持理论研究和教育,重点关注具有不寻常的多粒子凝聚的受挫折磁性材料以及由于强大和相互竞争的自旋而出现的“隐藏”挫折的系统。轨道相互作用。这项研究汇集了凝聚态物理学的几个突出主题-相关系统中竞争秩序的多样性,它们之间的量子相变,以及“隐藏”秩序出现背后的机制的识别。与通常的单粒子的情况不同,玻色凝聚,两个(或多个)粒子凝聚的特点是短程自旋关联和不寻常的向列型序参数。的情况下,在点表示的受抑铁磁体,其相图是由一个量子临界点的Lifshitz型与动力学临界指数z=4。PI建议构建这个临界点的场论描述,并研究多极自旋-自旋相出现所需的条件。在本研究过程中,PI打算探索具有两个磁振子凝聚体的玻色子系统与费米子超导体或电荷密度波之间的类比。金属受抑磁体,其中巡游电子与局域自旋交换耦合,构成PI打算追求的另一个主要研究方向。这些材料允许通过电子传输测量探测磁相和转变的有趣的可能性。PI计划从理论上分析磁振子玻色-爱因斯坦凝聚相变磁体的电阻率,并将这一分析扩展到具有拓扑非平凡能带结构的新实验系统。这里发展的理论将应用于真实的磁性材料。通过将场论方法与半经典自旋波展开相结合,PI计划描述最近发现的可果美材料volborthite中三分之一磁化平台的物理特性,并分析其可能的不稳定性。PI还将研究具有竞争性自旋轨道相互作用的新型自旋链绝缘体,通过在相邻链中强制相反的螺旋相关性,有效地促进类似伊辛的纵向自旋密度波态,这是巡回电子系统中电荷密度波序的绝缘模拟。该奖项将支持理论固态物理学的研究生。参与研究的学生将接受现代理论技术的培训,如玻色子化,重整化群,量子场和图解多体理论。此外,PI正计划为本科生组织一个全系的物理奥林匹克竞赛。奥林匹克竞赛将包括一组简短但不平凡的问题,需要对普通物理有很好的理解才能解决。其目的是促进学生对物理学的兴趣,发现特别有才华的学生,并为他们提供与专业研究人员的早期接触。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleg Starykh其他文献

Viewing a Quantum Spin Liquid through QED
通过 QED 查看量子自旋液体
  • DOI:
    10.1103/physics.17.63
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Oleg Starykh
  • 通讯作者:
    Oleg Starykh

Oleg Starykh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleg Starykh', 18)}}的其他基金

Collective Modes and Electrodynamics of Interacting Spin Liquids
相互作用自旋液体的集体模式和电动力学
  • 批准号:
    1928919
  • 财政年份:
    2019
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
FRUSTRATED MAGNETISM IN SPIN-ORBIT COUPLED MATERIALS
自旋轨道耦合材料中的受挫磁性
  • 批准号:
    1206774
  • 财政年份:
    2012
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Competing Orders in Frustrated Magnets and Nanostructures
受挫磁铁和纳米结构的竞争订单
  • 批准号:
    0808842
  • 财政年份:
    2009
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant

相似海外基金

Disorder, Topology and Frustration in Quantum Materials
量子材料中的无序、拓扑和挫败
  • 批准号:
    2310318
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Hierarchically Ordered Structures by Frustration Design of Liquid Crystals and Its Functional Exploration
液晶的分层有序结构及其功能探索
  • 批准号:
    23H02038
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mitochondrial positioning regulates redox-signaling during cell migration
线粒体定位调节细胞迁移过程中的氧化还原信号
  • 批准号:
    10520211
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
  • 批准号:
    10491642
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
Corticothalamic circuits mediating behavioral adaptations to unexpected reward omission
皮质丘脑回路介导对意外奖励遗漏的行为适应
  • 批准号:
    10734683
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
The Prevalence and Functional Impact of Moral Injury in Veterans
退伍军人道德伤害的患病率和功能影响
  • 批准号:
    10633476
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
A clinical trial of adaptive treatment for early smoking cessation relapse
早期戒烟复发适应性治疗的临床试验
  • 批准号:
    10752773
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
Local labor market contexts and substance use in young and middle adulthood: Using agent-based modeling to guide substance use prevention strategies
当地劳动力市场环境和青壮年的物质使用:使用基于主体的模型来指导物质使用预防策略
  • 批准号:
    10740252
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
The AMPREDICT PROsthetics Decision Support Tool: using evidence to guide personalized prosthetic prescription and rehabilitation planning
AMPREDICT 假肢决策支持工具:利用证据指导个性化假肢处方和康复规划
  • 批准号:
    10750706
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
Non-reciprocal frustration physics
非互易挫败物理学
  • 批准号:
    23K19034
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了