Collaborative Research: Defect-free nano fabrication of plasmonic structures
合作研究:等离子体结构的无缺陷纳米制造
基本信息
- 批准号:1507600
- 负责人:
- 金额:$ 12.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last decades the impressive development of photonic technology made possible new revolutionary devices with unthinkable capabilities. Now it is possible to conceive high-resolution sensors capable of single molecule detection, or powerful microscopes capable to surpass the previously accepted resolution limits, or even a clear path towards the realization of a fully photonic computer that will use light instead of electrons. All these accomplishments have a common denominator: all make use of the unique properties of meta-materials. Meta-materials are nano-scale structures fabricated in metals, semiconductors or in a mixture of them that combined with laser pulses had opened a whole new research area that enabled new innovative applications. Instrumental to the implementation and broad dissemination of these new devices is the rapid access to a reliable nano-fabrication technology. This project proposes the development of a new fabrication approach for nanoscale structures that due to its simplicity, lower cost, robustness and efficiency can make a significant contribution in facilitating the broad utilization of meta-materials. It promises the realization of a tabletop patterning tool that could easily be integrated with other processing tools in a small business or a laboratory environment, and will have the potential to simplify the operation of small companies dedicated to high tech and nanotechnology with the consequent benefit to society. It will also impact the education through the training of students in an innovative technology that combines optical engineering and metrology, laser design and material science.This research project will demonstrate a compact (tabletop) nano-fabrication tool capable of printing defect-free arbitrary structures with sub-50nm feature size, over large areas (millimeter square), with short exposure times (typically less than one minute). The approach will use interferometric lithography and Talbot self-imaging in combination with a highly coherent tabletop extreme ultraviolet laser to optically replicate nanostructures defined in a mask over multiple samples. The novelty of the method resides on the utilization of highly coherent extreme ultraviolet table-top lasers that combined with classical optical effects will make possible a nano-fabrication method with the following distinctive characteristics:- Defect free. This is a unique characteristic. Any defect on the original lithographic mask is averaged over the entire imaging field and the resulting print is essentially defect-free.- Compact (tabletop) system that can bring nano-patterning capabilities to small size companies or university research laboratories.- Scalable. With the adequate illumination, it is possible to print de-magnified replicas of the original master.- Robust. Because the mask is not in contact with the sample, it is not damaged nor degraded with usage.- Simple to implement. The working distance between the mask and the sample is very large, typically few millimeters, which facilitates the experimental set up.- Trivial alignment. The set up consists of only the diffractive mask and the sample.The mature technology of compact extreme ultraviolet lasers now opens a window of opportunity to demonstrate a nano-fabrication method that was not feasible before due to the lack of sufficiently large average power coherent sources. With the proposed lithography approach, it will be feasible to print, in a few minutes, patterns with arbitrary motives and sub-50nm critical size. Since the pattern's smallest feature is mainly controlled by the wavelength of the illumination (the laser's wavelengths range from 47nm to 13 nm) it is conceivable that this method will allow the fabrication of nanostructures with feature size in the few tens of nanometers.
在过去的几十年里,光子技术的发展令人印象深刻,使具有不可想象能力的新革命性设备成为可能。 现在可以设想能够进行单分子检测的高分辨率传感器,或者能够超越先前接受的分辨率限制的强大显微镜,甚至是实现完全光子计算机的清晰途径,该计算机将使用光而不是电子。 所有这些成就都有一个共同点:都利用了超材料的独特属性。 超材料是在金属,半导体或它们的混合物中制造的纳米级结构,与激光脉冲相结合开辟了一个全新的研究领域,使新的创新应用成为可能。 快速获得可靠的纳米制造技术是实施和广泛传播这些新设备的关键。 该项目提出开发一种新的纳米级结构制造方法,由于其简单性、较低的成本、鲁棒性和效率,可以为促进超材料的广泛利用做出重大贡献。 它有望实现桌面图案化工具,可以很容易地与小企业或实验室环境中的其他处理工具集成,并有可能简化致力于高科技和纳米技术的小公司的操作,从而造福社会。 该研究项目还将通过对学生进行创新技术培训来影响教育,该技术结合了光学工程和计量学,激光设计和材料科学。该研究项目将展示一种紧凑的(桌面)纳米制造工具,能够在大面积(平方毫米)上打印无缺陷的任意结构,特征尺寸小于50 nm,曝光时间短(通常不到一分钟)。该方法将使用干涉光刻和塔尔博特自成像与高度相干的桌面极紫外激光相结合,以光学复制多个样品上的掩模中定义的纳米结构。 该方法的新奇在于利用高度相干的极紫外桌面激光器,其与经典光学效应相结合将使具有以下显著特征的纳米制造方法成为可能: 这是一个独特的特点。 原始光刻掩模上的任何缺陷在整个成像场上被平均化,并且所得到的印刷品基本上没有缺陷。紧凑的(桌面)系统,可以为小型公司或大学研究实验室带来纳米图案化能力。可扩展。 有了足够的照明,就可以打印原始母版的缩小复制品。健壮。由于面罩不与样品接触,因此不会因使用而损坏或降解。易于实施。掩模和样品之间的工作距离非常大,通常为几毫米,这有利于实验设置。微不足道的结盟。该装置仅由衍射掩模和样品组成。紧凑型极紫外激光器的成熟技术现在为展示纳米制造方法打开了一扇机会之窗,这种方法以前由于缺乏足够大的平均功率相干光源而不可行。利用所提出的光刻方法,在几分钟内印刷具有任意动机和亚50nm临界尺寸的图案将是可行的。由于图案的最小特征主要由照明的波长(激光的波长范围从47nm到13nm)控制,因此可以想象,这种方法将允许制造具有几十纳米的特征尺寸的纳米结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Willie Rockward其他文献
Willie Rockward的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Willie Rockward', 18)}}的其他基金
NSBP 2022-2023 Annual Conferences
NSBP 2022-2023年年会
- 批准号:
2233329 - 财政年份:2022
- 资助金额:
$ 12.36万 - 项目类别:
Continuing Grant
2020 NSBP Annual Conference, November 6-8, 2020
2020年NSBP年会,2020年11月6-8日
- 批准号:
2042135 - 财政年份:2020
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Biological production and enzymatic processing for defect-free, scalable nucleic-acid circuits
合作研究:FET:中:无缺陷、可扩展核酸电路的生物生产和酶处理
- 批准号:
2106696 - 财政年份:2021
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Biological production and enzymatic processing for defect-free, scalable nucleic-acid circuits
合作研究:FET:中:无缺陷、可扩展核酸电路的生物生产和酶处理
- 批准号:
2106695 - 财政年份:2021
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2005006 - 财政年份:2020
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2005064 - 财政年份:2020
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
- 批准号:
1902644 - 财政年份:2019
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
- 批准号:
1928788 - 财政年份:2019
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
- 批准号:
1902623 - 财政年份:2019
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
- 批准号:
1928784 - 财政年份:2019
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1802167 - 财政年份:2018
- 资助金额:
$ 12.36万 - 项目类别:
Standard Grant