GOALI: A Novel Flux Switching Permanent Magnet Machine for Emerging and Renewable Energy Systems
GOALI:用于新兴和可再生能源系统的新型磁通开关永磁电机
基本信息
- 批准号:1507609
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using energy more efficiently provides major economic advantages, reduces our consumption of limited resources, and mitigates climate change. About 45% of all energy is used through electric motors and a majority of world's energy is generated using electric generators. Permanent magnet motors and generators play a critical role for energy conversion and are used in many applications including appliances, industrial, automotive, aerospace, oil and gas, and medical equipment. Permanent magnet generators are used in renewable energy applications including wind and ocean wave derived power. Because of their relatively high efficiency, permanent magnet electric machines play a key role compared to other electric machines. One developed machine class, the flux switching permanent magnet (FSPM), has gained significant interest in the scientific community because of its inherent advantages in terms of high efficiency, high power density, and high-speed capability; however, it has yet to become commercially viable. The main challenge of this machine is the requirement of very high fundamental frequency, especially in medium to high-speed machines, as current power electronics are unable to provide such frequency. In addition, high fundamental frequency causes additional losses in the motor, reducing its efficiency. This university-industry research collaboration proposes a novel flux switching permanent magnet machine topology to mitigate this issue and reduce the frequency requirement by 60%, to increase efficiency, and to promote further research on FSPM machines and applications. The research will focus on developing theory as well as designing and testing an experimental machine prototype. In addition, this project aims to provide continuing education for practicing engineers. Research results will be incorporated into future short courses and seminars, with dissemination to practicing engineers. Through this and with enhanced classes for undergraduate and graduate students, the workforce skill set will be prepared to develop more efficient electric machines. Also, demonstrations will be created to promote engineering and efficient energy practices for pre-college students, including underrepresented groups, during campus visits. These programs will aim to inspire current and future engineers to continue to further sustainable engineering practices.The flux switching permanent magnet machine has a very simple rotor structure, which is a promising candidate for low cost and high-speed operation. It provides an excellent opportunity to achieve higher power density and improved efficiency. The current FSPM machine being extensively studied is the 12 stator slot / 10 rotor pole (12/10) topology. This relatively high number of poles, in addition to high-speed applications, is the primary cause of the high fundamental frequency requirement. It has long been thought that the 12/10 has the smallest number of poles needed to create sinusoidal back-EMF and acceptable torque characteristics. However, this research proposes the study and development of a novel 6/4 FSPM topology, utilizing a dual stator structure. The reduced number of rotor poles results in a 60% reduction in fundamental frequency requirements, which reduces the core and permanent magnet losses, improving efficiency in these areas by 33% for the same rotor speed. These improvements result in more efficient and higher power density machines. Thus, the development of the novel 6/4 topology will aim to enable other permanent magnet machines to replace current low efficiency machines in various applications. Through the course of this project, sizing equations and other scientific techniques will be developed to quantify the benefits of the proposed machine compared to current technology. A proof of concept machine and a higher power prototype will be developed to validate the theoretical results.
更有效地利用能源提供了重大的经济优势,减少了我们对有限资源的消耗,并缓解了气候变化。大约45%的能源是通过电动机使用的,世界上大部分的能源是通过发电机产生的。永磁电机和发电机在能量转换中起着至关重要的作用,并用于许多应用,包括电器、工业、汽车、航空航天、石油和天然气以及医疗设备。永磁发电机用于可再生能源应用,包括风能和海浪发电。永磁电机由于其相对较高的效率,与其他电机相比起着关键的作用。一种已开发的机器类型,磁通开关永磁体(FSPM),由于其在高效率,高功率密度和高速性能方面的固有优势而引起了科学界的极大兴趣;然而,它尚未具有商业可行性。这种机器的主要挑战是要求非常高的基频,特别是在中高速机器中,因为目前的电力电子设备无法提供这样的频率。此外,高基频会导致电机的额外损耗,降低其效率。这项大学-工业研究合作提出了一种新的磁通开关永磁机器拓扑结构,以缓解这一问题,并将频率要求降低60%,以提高效率,并促进FSPM机器和应用的进一步研究。该研究将侧重于理论的发展以及实验机器原型的设计和测试。此外,本项目旨在为在职工程师提供继续教育。研究成果将纳入未来的短期课程和研讨会,并传播给实践工程师。通过这种方式,再加上加强本科生和研究生的课程,劳动力技能将为开发更高效的电机做好准备。此外,在校园参观期间,将为包括代表性不足的群体在内的大学预科学生提供示范,以促进工程和有效的能源实践。这些项目旨在激励当前和未来的工程师继续推进可持续的工程实践。磁通开关永磁电机转子结构简单,是低成本、高速运行的理想选择。它为实现更高的功率密度和提高效率提供了极好的机会。目前被广泛研究的FSPM机床是12定子槽/10转子极(12/10)拓扑结构。除了高速应用之外,这种相对高数量的极点是高基频要求的主要原因。长期以来,人们一直认为12/10具有创建正弦反电动势和可接受的扭矩特性所需的最小数量的极。然而,本研究提出了一种新的6/4 FSPM拓扑的研究和开发,利用双定子结构。转子极数的减少导致60%的减少基本频率的要求,这减少了核心和永磁体的损失,提高效率在这些领域的33%为相同的转子速度。这些改进产生了效率更高、功率密度更高的机器。因此,新型6/4拓扑的发展将旨在使其他永磁机器在各种应用中取代目前的低效率机器。在这个项目的过程中,将开发尺寸方程和其他科学技术,以量化与当前技术相比,所提议的机器的好处。将开发概念验证机和更高功率的原型机来验证理论结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bulent Sarlioglu其他文献
Bulent Sarlioglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bulent Sarlioglu', 18)}}的其他基金
CAREER: NOVEL INTEGRATION OF FLUID DYNAMIC DESIGN INTO ELECTRIC MACHINES
职业:流体动力学设计与电机的新颖集成
- 批准号:
1552942 - 财政年份:2016
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel and simple mechanism by which cells can sense enzymatic flux
细胞感知酶通量的新颖而简单的机制
- 批准号:
10563638 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Extremely Low-Power Half-Flux-Quantum Circuits using Novel, Large Inductance Induced by Magnetic Josephson Junctions
使用磁性约瑟夫森结感应的新型大电感的极低功耗半通量量子电路
- 批准号:
22H01548 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel regulation of autophagic flux for the treatment of Alzheimer's disease
自噬流的新调节用于治疗阿尔茨海默氏病
- 批准号:
10381804 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Novel roles of PDK4 in regulating mitochondrial protein phosphorylation, carbon flux and metabolic resilience
PDK4 在调节线粒体蛋白磷酸化、碳通量和代谢弹性中的新作用
- 批准号:
10604378 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Novel roles of PDK4 in regulating mitochondrial protein phosphorylation, carbon flux and metabolic resilience
PDK4 在调节线粒体蛋白磷酸化、碳通量和代谢弹性中的新作用
- 批准号:
10444249 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Novel cooling methods for high-heat-flux microprocessors
高热通量微处理器的新型冷却方法
- 批准号:
519477-2018 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Establishment of an in vivo imaging system and novel biomarkers for monitoring autophagy flux
建立体内成像系统和监测自噬通量的新型生物标志物
- 批准号:
20K19675 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring PARP biology and therapy response via metabolic flux analysis and a novel chemical proteomics workflow
通过代谢流分析和新型化学蛋白质组学工作流程探索 PARP 生物学和治疗反应
- 批准号:
2278928 - 财政年份:2019
- 资助金额:
$ 44万 - 项目类别:
Studentship
Novel cooling methods for high-heat-flux microprocessors
高热通量微处理器的新型冷却方法
- 批准号:
519477-2018 - 财政年份:2019
- 资助金额:
$ 44万 - 项目类别:
Postgraduate Scholarships - Doctoral
Novel microbial players and energy metabolisms for the carbon flux under the methanogenic environments
产甲烷环境下碳通量的新型微生物参与者和能量代谢
- 批准号:
18K18184 - 财政年份:2018
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




