Collaborative Research: Defect-free nanofabrication of plasmonic structures

合作研究:等离子体结构的无缺陷纳米制造

基本信息

  • 批准号:
    1507907
  • 负责人:
  • 金额:
    $ 23.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

In the last decades the impressive development of photonic technology made possible new revolutionary devices with unthinkable capabilities. Now it is possible to conceive high-resolution sensors capable of single molecule detection, or powerful microscopes capable to surpass the previously accepted resolution limits, or even a clear path towards the realization of a fully photonic computer that will use light instead of electrons. All these accomplishments have a common denominator: all make use of the unique properties of meta-materials. Meta-materials are nano-scale structures fabricated in metals, semiconductors or in a mixture of them that combined with laser pulses had opened a whole new research area that enabled new innovative applications. Instrumental to the implementation and broad dissemination of these new devices is the rapid access to a reliable nano-fabrication technology. This project proposes the development of a new fabrication approach for nanoscale structures that due to its simplicity, lower cost, robustness and efficiency can make a significant contribution in facilitating the broad utilization of meta-materials. It promises the realization of a tabletop patterning tool that could easily be integrated with other processing tools in a small business or a laboratory environment, and will have the potential to simplify the operation of small companies dedicated to high tech and nanotechnology with the consequent benefit to society. It will also impact the education through the training of students in an innovative technology that combines optical engineering and metrology, laser design and material science.This research project will demonstrate a compact (tabletop) nano-fabrication tool capable of printing defect-free arbitrary structures with sub-50nm feature size, over large areas (millimeter square), with short exposure times (typically less than one minute). The approach will use interferometric lithography and Talbot self-imaging in combination with a highly coherent tabletop extreme ultraviolet laser to optically replicate nanostructures defined in a mask over multiple samples. The novelty of the method resides on the utilization of highly coherent extreme ultraviolet table-top lasers that combined with classical optical effects will make possible a nano-fabrication method with the following distinctive characteristics:- Defect free. This is a unique characteristic. Any defect on the original lithographic mask is averaged over the entire imaging field and the resulting print is essentially defect-free.- Compact (tabletop) system that can bring nano-patterning capabilities to small size companies or university research laboratories.- Scalable. With the adequate illumination, it is possible to print de-magnified replicas of the original master.- Robust. Because the mask is not in contact with the sample, it is not damaged nor degraded with usage.- Simple to implement. The working distance between the mask and the sample is very large, typically few millimeters, which facilitates the experimental set up.- Trivial alignment. The set up consists of only the diffractive mask and the sample.The mature technology of compact extreme ultraviolet lasers now opens a window of opportunity to demonstrate a nano-fabrication method that was not feasible before due to the lack of sufficiently large average power coherent sources. With the proposed lithography approach, it will be feasible to print, in a few minutes, patterns with arbitrary motives and sub-50nm critical size. Since the pattern's smallest feature is mainly controlled by the wavelength of the illumination (the laser's wavelengths range from 47nm to 13 nm) it is conceivable that this method will allow the fabrication of nanostructures with feature size in the few tens of nanometers.
在过去的几十年中,光子技术的令人印象深刻的发展使新的革命设备具有不可思议的功能。 现在,可以构想能够超越以前可接受的分辨率限制的高分辨率传感器,或者有力的显微镜,甚至是通往实现完全光子计算机的清晰路径,该计算机将使用光而不是电子。 所有这些成就都有一个共同的分母:所有这些都利用元物质的独特特性。 元物质是用金属,半导体或与激光脉冲结合的混合物制造的纳米级结构,已经打开了一个全新的研究区域,从而实现了新的创新应用。 这些新设备的实施和广泛传播是快速获取可靠的纳米制作技术。 该项目提出开发一种新的纳米级结构制造方法,该方法由于其简单性,较低的成本,稳健性和效率可以为促进元物质的广泛利用做出重大贡献。 它承诺实现桌面图案工具,该工具可以轻松地与小型企业或实验室环境中的其他处理工具集成在一起,并有可能简化专门针对高科技和纳米技术的小型公司的运营,从而对社会产生好处。 它还将通过在创新技术中培训学生的培训来影响教育,该技术结合了光学工程和计量学,激光设计和材料科学。本研究项目将表明能够打印无缺陷的任意结构的紧凑型(桌面)纳米制动工具,与大面积相比(毫米平方)(典型的是一分钟)(典型)(典型的曝光时间)(均小于一个小面积)。该方法将结合使用高度连贯的桌面极端紫外线激光,将干涉光刻和塔尔伯特自我形象结合起来,以光学复制在掩码中定义的纳米结构,这些纳米结构在多个样品上定义了。 该方法的新颖性在于利用高度连贯的极端紫外线台式激光器,这些激光器与经典的光学效应结合使用,将使具有以下独特特征的纳米模式方法成为可能: - 无缺陷。 这是一个独特的特征。 原始光刻面膜上的任何缺陷均在整个成像场中平均,并且所得的印刷本质上是无缺陷的。-紧凑型(桌面)系统,可以为小型公司或大学研究实验室带来纳米图案功能。-可扩展。 有了足够的照明,可以打印原始大师的脱磁复制品。由于掩模与样本没有接触,因此不会损坏或使用使用损坏。-易于实现。掩模和样品之间的工作距离非常大,通常很少毫米,这有助于实验设置。-琐碎的比对。该设置仅由衍射掩码和样品组成。通过提出的光刻方法,在几分钟内以任意动机和低于50nm的临界大小打印的模式将是可行的。由于该模式的最小特征主要由照明的波长控制(激光波长的范围为47nm至13 nm),因此可以想象,该方法将允许在几个纳米计中制造具有特征大小的纳米结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mario Marconi其他文献

Mario Marconi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mario Marconi', 18)}}的其他基金

Table top EUV holography: a new approach for versatile nanolithography
桌面 EUV 全息术:多功能纳米光刻的新方法
  • 批准号:
    0901806
  • 财政年份:
    2009
  • 资助金额:
    $ 23.64万
  • 项目类别:
    Standard Grant
NER: Expanding the Limits of Nanofabrication with Extreme Ultraviolet Light - (Theme: Manufacturing Processes at the Nanoscale)
NER:用极紫外光扩展纳米制造的极限 -(主题:纳米尺度的制造工艺)
  • 批准号:
    0508484
  • 财政年份:
    2005
  • 资助金额:
    $ 23.64万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 23.64万
  • 项目类别:
    Standard Grant
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 23.64万
  • 项目类别:
Rationally Designed, Target-specific Imaging Probes for Nephro-urology Diagnoses
用于肾泌尿科诊断的合理设计、针对特定目标的成像探头
  • 批准号:
    10659440
  • 财政年份:
    2023
  • 资助金额:
    $ 23.64万
  • 项目类别:
Defining the role of persistent DNA bridges in tumor-intrinsic immune activation in hereditary breast and ovarian cancer
确定持久性 DNA 桥在遗传性乳腺癌和卵巢癌肿瘤内在免疫激活中的作用
  • 批准号:
    10606942
  • 财政年份:
    2023
  • 资助金额:
    $ 23.64万
  • 项目类别:
Regulation and function of subcellular RNA localization in neural crest cells and their derivatives
神经嵴细胞及其衍生物亚细胞RNA定位的调控和功能
  • 批准号:
    10739280
  • 财政年份:
    2023
  • 资助金额:
    $ 23.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了