Transport Properties of Self-Assembled DNA Systems

自组装 DNA 系统的传输特性

基本信息

项目摘要

Nontechnical SummaryPractical nanotechnology requires precise and inexpensive placement of nanometer-size components into an operational unit. The DNA nanotechnology achieves exactly that by utilizing the self-assembly property of DNA. This project will explore the use of self-assembled DNA materials for controlling the motion of molecules through fluid environment. Computer simulations will elucidate the mechanism of electrical conductivity of self-assembled DNA structures. Nanoscale objects will be designed to function as analogs of electrical wires, pipes and transistors. Mimicking nature, membrane-spanning DNA systems will be developed to regulate the passage of biomolecules across a cell boundary. These research activities will be closely integrated with education and outreach and will provide the rapidly expanding field of DNA nanotechnology with computational methods and tools for theoretical exploration of self-assembled DNA structures. Technical Summary This project aims to characterize the transport properties of self-assembled DNA nanostructures for possible applications in biosensing, nanofluidics, and biomimetic systems. All-atom molecular dynamics simulations will characterize the ionic conductivity of various DNA origami designs and probe their structural integrity in an external electric field. The simulations will explore the behavior of DNA gridirons and DNA bricks structures, and evaluate their usefulness for nanopore sensing applications. Charged and hollow DNA origami constructs will be designed to serve as conduits for ions and small biomolecules in fluid environment, analogous to macroscopic wires and pipes. The structural response of the DNA origami to electric field will be exploited to design and demonstrate a DNA origami transistor. The physical principles of gated and selective biological ion channels will be implemented in membrane-spanning DNA constructs. The theoretical work will be carried out in close collaboration with experimentalists characterizing the transport through self-assembled DNA structures. This project is expected to provide new insights into the physical mechanisms of charged solutes transport in fluid environment, finding practical application in nanopore detection of biomolecules, unconventional computing and synthetic tissue engineering. This research program will have a direct impact on the development of functional DNA nanotechnology by providing the research community with methods and tools to build, visualize and simulate self-assembled DNA systems. The technological knowledge and expertise acquired through this program will be made available through step-by-step tutorials, modules of the popular computer program VMD and as research and educational tools at nanoHUB. Material generated within this project will be used to prepare a set of lectures and demos for the biophysics undergraduate and graduate courses. The project will develop educational DNA origami puzzles and a DNA LEGO constructor kit and will make them available to everyone by taking advantage of the 3D printing technology.
非技术摘要实用的纳米技术需要将纳米尺寸的组件精确且廉价地放置到操作单元中。 DNA纳米技术正是利用DNA的自组装特性实现了这一点。该项目将探索使用自组装 DNA 材料来控制分子在流体环境中的运动。计算机模拟将阐明自组装 DNA 结构的导电机制。 纳米级物体将被设计为类似于电线、管道和晶体管的功能。模仿自然,跨膜 DNA 系统将被开发来调节生物分子穿过细胞边界的通道。这些研究活动将与教育和推广紧密结合,并将为快速扩展的 DNA 纳米技术领域提供自组装 DNA 结构理论探索的计算方法和工具。技术摘要 该项目旨在表征自组装 DNA 纳米结构的传输特性,以用于生物传感、纳米流体和仿生系统的可能应用。全原子分子动力学模拟将表征各种 DNA 折纸设计的离子电导率,并探测其在外部电场中的结构完整性。模拟将探索 DNA 网格和 DNA 砖结构的行为,并评估它们在纳米孔传感应用中的有用性。带电和空心 DNA 折纸结构将被设计用作流体环境中离子和小生物分子的导管,类似于宏观电线和管道。 DNA 折纸对电场的结构响应将被用来设计和演示 DNA 折纸晶体管。门控和选择性生物离子通道的物理原理将在跨膜 DNA 构建中实现。理论工作将与实验人员密切合作进行,以表征通过自组装 DNA 结构的运输。该项目预计将为流体环境中带电溶质传输的物理机制提供新的见解,在生物分子的纳米孔检测、非常规计算和合成组织工程中找到实际应用。 该研究项目将为研究界提供构建、可视化和模拟自组装 DNA 系统的方法和工具,对功能性 DNA 纳米技术的发展产生直接影响。通过该计划获得的技术知识和专业知识将通过分步教程、流行计算机程序 VMD 的模块以及 nanoHUB 的研究和教育工具提供。该项目中生成的材料将用于为生物物理学本科生和研究生课程准备一组讲座和演示。该项目将开发教育性 DNA 折纸拼图和 DNA 乐高拼搭套件,并利用 3D 打印技术将其提供给每个人。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksei Aksimentiev其他文献

Molecular dynamics simulations of OmpF permeability to liquid and vapor water
  • DOI:
    10.1016/j.bpj.2021.11.2859
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Behzad Mehrafrooz;Himanshu Joshi;Hyeonji Oh;Yu-Ming Tu;Manish Kumar;Aleksei Aksimentiev
  • 通讯作者:
    Aleksei Aksimentiev
Unraveling the Nucleosome through Microscopic Simulations
  • DOI:
    10.1016/j.bpj.2019.11.3371
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    David N. Winogradoff;Aleksei Aksimentiev
  • 通讯作者:
    Aleksei Aksimentiev
Complete all-atom structure of a mature virion
  • DOI:
    10.1016/j.bpj.2021.11.2405
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Kush Coshic;Christopher Maffeo;David N. Winogradoff;Aleksei Aksimentiev
  • 通讯作者:
    Aleksei Aksimentiev
Improved Parametrization of Ion-DNA Interactions for MD Simulations of Dense DNA Systems
  • DOI:
    10.1016/j.bpj.2011.11.3468
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Jejoong Yoo;Aleksei Aksimentiev
  • 通讯作者:
    Aleksei Aksimentiev
Marcus-like translocation kinetics of a knotted protein
  • DOI:
    10.1016/j.bpj.2022.11.1738
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Prabhat Tripathi;Behzad Mehrafrooz;Aleksei Aksimentiev;Sophie E. Jackson;Meni Wanunu
  • 通讯作者:
    Meni Wanunu

Aleksei Aksimentiev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksei Aksimentiev', 18)}}的其他基金

Elements: Enabling multi-resolution simulations at the interface of biology and nanotechnology with ARBD
要素:利用 ARBD 在生物学和纳米技术的界面上实现多分辨率模拟
  • 批准号:
    2311550
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
NSF Frontera Allocation Travel Grant
NSF Frontera 分配旅行补助金
  • 批准号:
    2031623
  • 财政年份:
    2020
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Functional DNA Nanostructures
功能性 DNA 纳米结构
  • 批准号:
    1827346
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
  • 批准号:
    1740212
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
CAREER: Deciphering Ionic Current Signatures of Polymer Transport through a Nanopore
职业:破译聚合物通过纳米孔传输的离子电流特征
  • 批准号:
    0955959
  • 财政年份:
    2010
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Exploring self-organization of functional nucleic acid supramolecular assemblies with stimuli responsive properties
合作研究:探索具有刺激响应特性的功能性核酸超分子组装体的自组织
  • 批准号:
    2203946
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
  • 批准号:
    RGPIN-2019-05234
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Exploring self-organization of functional nucleic acid supramolecular assemblies with stimuli responsive properties
合作研究:探索具有刺激响应特性的功能性核酸超分子组装体的自组织
  • 批准号:
    2204027
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
'Crack-free' and smart `self-sealing' composites with improved microstructure, early-age properties, and durability
“无裂纹”和智能“自密封”复合材料具有改进的微观结构、早期性能和耐用性
  • 批准号:
    RGPIN-2016-05219
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Discovery Grants Program - Individual
Self-Similar and Neuromorphic Properties in Core-Shell Nanowire Network Systems
核壳纳米线网络系统中的自相似和神经形态特性
  • 批准号:
    575717-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Correlating optical properties of self-assembled metal nanoparticles with their fine nanoscale structure via co-registration of electron microscopy...
通过电子显微镜的共同配准将自组装金属纳米粒子的光学特性与其精细纳米级结构相关联......
  • 批准号:
    2744388
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Studentship
Evaluating the psychometric properties of the American Sign Language youth self-rated Strengths and Difficulties Questionnaire in a nationally representative sample of deaf and hard of hearing Canadian children and adolescents
评估美国手语青少年自评优势和困难问卷的心理测量特性,以加拿大耳聋和重听儿童和青少年为全国代表性样本
  • 批准号:
    485963
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Studentship Programs
Collaborative Research: Exploring self-organization of functional nucleic acid supramolecular assemblies with stimuli responsive properties
合作研究:探索具有刺激响应特性的功能性核酸超分子组装体的自组织
  • 批准号:
    2203979
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Self-healing characteristics and thermo-rheological properties of high-performance asphalt materials
高性能沥青材料的自修复特性及热流变性能
  • 批准号:
    547504-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Reprogramming materials properties of synapsin self-coacervates via phosphorylation code
通过磷酸化代码重编程突触蛋白自凝聚的材料特性
  • 批准号:
    2104854
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了