Reprogramming materials properties of synapsin self-coacervates via phosphorylation code
通过磷酸化代码重编程突触蛋白自凝聚的材料特性
基本信息
- 批准号:2104854
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYPerhaps the most intriguing aspect in looking to structures within the cell to inspire the next generation of novel materials is not their bulk structural properties but the cellular ability to “reprogram” these structures. Much as reprogramming software allows it to perform different tasks, reprogramming materials allows them to take on novel functions after production. This is especially evident in select proteins that phase separate into protein-rich and protein-dilute liquid phases, much as oil added to water will separate into an oil-rich liquid phase. This phase separation has been shown to be controlled by phosphorylation, or the addition of a charged phosphate group to the protein. Not all phosphorylations are created equal; phosphorylation at certain sites within the protein will eliminate the ability to phase separate while others still can control the transport of molecules in-and-out of the protein-rich liquid phase. However, the inability to simultaneously assess the sequence of phosphorylation (or “phosphorylation code”) and the corresponding materials properties of the protein-rich liquid phase in the cell has made it difficult to design synthetic materials that offer similar reprogramming capability. This project seeks to overcome this obstacle by using novel biochemical engineering techniques to manufacture proteins with specific phosphorylation codes and subsequently measure the materials properties of these phase separating-proteins. In doing so, a framework will be created to design other materials with similar reprogramming capabilities and potentially generate a new class of biomimetic materials for therapeutic and consumer use. Beyond that, given the multidisciplinary scientific and engineering requirements, this project will not only provide training opportunities for the next generation of interdisciplinary scientists but seek to expand that pipeline by providing research opportunities for students at local community colleges in the greater Los Angeles area. TECHNICAL SUMMARYIntrinsically disordered proteins (IDPs) persist as biopolymers in solution and can undergo phase separation into protein-rich liquid droplets, akin to polymer coacervation. These subcellular structures serve unique purposes, ranging from organelle sequestration to potentially behaving as bio-reactors within the cell. However, biology has built in an additional layer of sophistication; IDPs can be “reprogrammed” via post-translational modifications to alter the materials properties, enabling a range of dynamic properties that would be impractical with well-folded proteins.One particular modification, phosphorylation (or the addition of a divalently-charged phosphate group), has been shown to independently control the phase behavior and biomacromolecule transport properties of synapsin, an IDP that forms synapsin-rich liquid droplets within the neuron. While control of these properties is an inviting target for biomaterials investigation, deciphering the “phosphorylation code” of modifications that can occur at multiple, distinct sites and correlating these codes to their resultant biological function remains a challenging obstacle. To overcome this barrier, insights from polymer science and physical chemistry will be used to target specific phosphorylation codes most likely to alter materials properties. Then, cell-free protein synthesis strategies will be used to express and purify synapsin with specific phosphorylation codes and measure their resultant biomaterials properties. Ultimately, this data will form the basis of a design framework that has explanatory and predictive power for reprogramming other IDP-based biomaterials and even synthetic polymer systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在寻找细胞内部结构以激发下一代新材料的过程中,最有趣的方面可能不是它们的整体结构特性,而是细胞“重新编程”这些结构的能力。就像重新编程软件可以让它执行不同的任务一样,重新编程材料可以让它们在生产后承担新的功能。这一点在精选的蛋白质中尤其明显,它们会分离成富蛋白质和稀蛋白质的液相,就像油加到水里会分离成富油的液相一样。这种相分离已被证明是由磷酸化控制的,或在蛋白质上添加一个带电荷的磷酸基团。并不是所有的磷酸化都是一样的;蛋白质中某些位点的磷酸化将消除相分离的能力,而其他位点仍然可以控制分子进出富含蛋白质的液相的运输。然而,由于无法同时评估细胞中富含蛋白质的液相的磷酸化序列(或“磷酸化代码”)和相应的材料特性,因此很难设计出具有类似重编程能力的合成材料。该项目旨在通过使用新的生化工程技术来制造具有特定磷酸化编码的蛋白质,并随后测量这些相分离蛋白质的材料特性,从而克服这一障碍。在此过程中,将创建一个框架来设计具有类似重编程能力的其他材料,并有可能产生一类用于治疗和消费者使用的新型仿生材料。除此之外,考虑到多学科的科学和工程要求,该项目不仅将为下一代跨学科科学家提供培训机会,还将通过为大洛杉矶地区当地社区大学的学生提供研究机会来扩大这一渠道。内在无序蛋白(IDPs)在溶液中作为生物聚合物存在,并且可以经历相分离成富含蛋白质的液滴,类似于聚合物的凝聚。这些亚细胞结构具有独特的用途,从细胞器隔离到细胞内潜在的生物反应器。然而,生物学已经建立了一个额外的复杂层;IDPs可以通过翻译后修饰来“重新编程”,从而改变材料的特性,从而实现对折叠良好的蛋白质来说不切实际的一系列动态特性。一种特殊的修饰,磷酸化(或添加一个带二价电荷的磷酸基),已被证明可以独立地控制突触蛋白的相行为和生物大分子运输特性,突触蛋白是一种在神经元内形成富含突触蛋白的液滴的IDP。虽然这些特性的控制是生物材料研究的一个诱人目标,但破译可能发生在多个不同位点的修饰的“磷酸化密码”并将这些密码与其所产生的生物学功能相关联仍然是一个具有挑战性的障碍。为了克服这一障碍,将利用聚合物科学和物理化学的见解来针对最有可能改变材料性质的特定磷酸化代码。然后,无细胞蛋白合成策略将用于表达和纯化具有特定磷酸化编码的突触蛋白,并测量其所得的生物材料特性。最终,这些数据将形成设计框架的基础,该框架具有解释和预测能力,可用于重新编程其他基于idp的生物材料甚至合成聚合物系统。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Chung其他文献
Male sterility and enhanced radiation sensitivity in
雄性不育和辐射敏感性增强
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
M. Kuroda;John Sok;Lisa Webb;H. Baechtold;F. Urano;Yin Yin;Peter Chung;A. Akhmedov;T. Ashley;D. Ron - 通讯作者:
D. Ron
Lithium Toxicity: True or False?
- DOI:
10.1016/j.chest.2016.08.431 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Peter Chung;Kha Dinh;Beth Ruiz;Sara Schepcoff;Garbo Mak - 通讯作者:
Garbo Mak
Testicular seminoma: Scattered radiation dose to the contralateral testis in the modern era
- DOI:
10.1016/j.prro.2017.10.003 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:
- 作者:
Hester Lieng;Peter Chung;Tony Lam;Padraig Warde;Tim Craig - 通讯作者:
Tim Craig
245 Apparent Diffusion Coefficient Repeatability and Reproducibility Within the Prostate for MR-Guided Adaptive Radiation Therapy
245 前列腺内磁共振引导自适应放疗中表观扩散系数的重复性和再现性
- DOI:
10.1016/s0167-8140(23)89337-9 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:5.300
- 作者:
Nitara Fernando;Tony Tadic;Winnie Li;Tirth Patel;Jerusha Padayachee;Anna T. Santiago;Jennifer Dang;Peter Chung;Enrique Gutierrez;Catherine Coolens;Ed Taylor;Jeff D. Winter - 通讯作者:
Jeff D. Winter
A multidisciplinary discussion of BladderPath.
BladderPath 的多学科讨论。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Marie;J. Sfakianos;Tracy L. Rose;Peter Chung;W. Kassouf;A. Zlotta;Brant Inman;Peter C. Black - 通讯作者:
Peter C. Black
Peter Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Chung', 18)}}的其他基金
Symposium: Computation-Enabled Materials Discovery; College Park, Maryland; May 20, 2015
研讨会:计算支持的材料发现;
- 批准号:
1540302 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
碳/碳复合材料膺复体仿生喉气管重建动物模型建立
- 批准号:51172002
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
均匀纳米孔低介电材料的可控制备研究
- 批准号:90606011
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:重大研究计划
一维和二维的可调谐特异性电介质材料
- 批准号:50477048
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
RII Track-4:NSF: Direct and Complete Characterization of Electronic Properties of Materials Under Pressure
RII Track-4:NSF:压力下材料电子特性的直接完整表征
- 批准号:
2327363 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Study for mechanical properties of carbon fiber-reinforced composite materials with phase-separated structures
相分离结构碳纤维增强复合材料力学性能研究
- 批准号:
23H01291 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:
EP/W036673/1 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Research Grant
Evaluation of crystal structure and optical properties of light-emitting materials of three primary colors by rare earths-doped carbon nitride
稀土掺杂氮化碳三基色发光材料的晶体结构和光学性能评价
- 批准号:
23K03945 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization and Optimization of a Nanofiber-Hydrogel Composite for Tissue Remodeling
用于组织重塑的纳米纤维-水凝胶复合材料的表征和优化
- 批准号:
10678462 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
- 批准号:
10874883 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别: