Instabilities, asymptotic isometry, and energy condensation in elastic sheets under twist

扭曲下弹性片材的不稳定性、渐近等距和能量凝聚

基本信息

  • 批准号:
    1508186
  • 负责人:
  • 金额:
    $ 37.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

Nontechnical AbstractThe goal of the project is to develop a deep understanding of how thin elastic materials undergo buckling and creasing when subjected to twist. This knowledge is essential in obtaining the maximum functionality from devices made with new materials such as graphene sheets, nanotubes, semiconductor nanoribbons, and various biomaterials. Theoretical understanding of how thin sheets buckle and crease under stress is just in its infancy and these experimental studies will provide both guidance to and tests of these theories. Ultimately, this research will impact determination of strength and failure of thin materials under stress, and manufacturing of flexible structures and yarns by developing widely scalable techniques to pattern slender materials. The proposed research will also have a significant impact on educating students pursuing careers in STEM related disciplines. The dissertation research work of graduate students will be impacted by the grant. The project will enhance research experience of undergraduate students in the laboratory.Technical ParagraphThe goal of the project is to understand the buckling instabilities of thin elastic sheets subjected to twist which lead to wrinkling, stress focusing and energy condensation into creased structures. The fundamental role of elasticity and geometry in organizing the shape of the post-buckled structures will be investigated with experiments which will measure the shapes of the structures using micro x-ray tomography techniques and laser-aided optical imaging techniques. The phase diagram anticipated by a newly developed co-variant form of the Foppl-von Karman equations for thin plates will be investigated as function of sheet aspect ratio and elastic modulus. Development of minimal ridge structures and their interactions observed during the twisting of thin ribbon shapes will be used to study the scaling of the associated energy as a function of sheet thickness and applied deformation. Understanding formation of self-scrolled yarn and fabric structures under twist will provide an alternate reliable and efficient strategy to build mesoscale hierarchical structures with novel materials including graphene sheets, nanotubes, semiconductor nanoribbons, and biomaterials. Peer reviewed scientific publications will increase scientific knowledge in the field of condensed matter physics and will be disseminated on the web. Undergraduate and graduate students will be trained in the field of elasticity and soft matter, and in using sophisticated imaging techniques and analysis towards careers in STEM.
该项目的目标是深入了解薄弹性材料在受到扭曲时如何发生屈曲和折痕。这些知识对于从新材料(如石墨烯片、纳米管、半导体纳米带和各种生物材料)制成的设备中获得最大功能至关重要。关于薄板在压力下如何弯曲和折痕的理论理解还处于起步阶段,这些实验研究将为这些理论提供指导和测试。最终,这项研究将影响薄材料在应力下的强度和破坏的确定,以及通过开发广泛可扩展的技术来制造柔性结构和纱线。拟议的研究也将对教育追求STEM相关学科职业的学生产生重大影响。研究生的论文研究工作将受到资助的影响。该项目将提高本科生在实验室的研究经验。该项目的目标是了解薄弹性板在扭曲作用下的屈曲不稳定性,这种不稳定性会导致起皱、应力集中和能量凝聚成折痕结构。弹性和几何在组织后屈曲结构形状中的基本作用将通过实验进行研究,实验将使用微x射线断层扫描技术和激光辅助光学成像技术测量结构的形状。本文将研究新开发的Foppl-von Karman方程的共变形式所预测的相图作为薄片长径比和弹性模量的函数。最小脊结构的发展及其在薄带状扭曲过程中观察到的相互作用将用于研究相关能量作为薄片厚度和施加变形的函数的缩放。了解自卷曲纱线和织物结构在捻度下的形成,将为用石墨烯片、纳米管、半导体纳米带和生物材料等新型材料构建中尺度分层结构提供可靠而有效的替代策略。同行评议的科学出版物将增加凝聚态物理领域的科学知识,并将在网络上传播。本科生和研究生将接受弹性和软物质领域的培训,并在STEM职业中使用复杂的成像技术和分析。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Birth and decay of tensional wrinkles in hyperelastic sheets
超弹性片材中张力皱纹的产生和衰减
  • DOI:
    10.1103/physreve.100.053003
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Panaitescu, Andreea;Xin, Meng;Davidovitch, Benny;Chopin, Julien;Kudrolli, Arshad
  • 通讯作者:
    Kudrolli, Arshad
Measuring geometric frustration in twisted inextensible filament bundles
  • DOI:
    10.1103/physreve.95.052503
  • 发表时间:
    2017-05-31
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Panaitescu, Andreea;Grason, Gregory M.;Kudrolli, Arshad
  • 通讯作者:
    Kudrolli, Arshad
Corner singularities and shape of stretched elastic sheets
  • DOI:
    10.1103/physreve.98.043003
  • 发表时间:
    2018-10-17
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Chopin, Julien;Panaitescu, Andreea;Kudrolli, Arshad
  • 通讯作者:
    Kudrolli, Arshad
Tension-dependent transverse buckles and wrinkles in twisted elastic sheets
Persistence of Perfect Packing in Twisted Bundles of Elastic Filaments
  • DOI:
    10.1103/physrevlett.120.248002
  • 发表时间:
    2018-06-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Panaitescu, Andreea;Grason, Gregory M.;Kudrolli, Arshad
  • 通讯作者:
    Kudrolli, Arshad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arshad Kudrolli其他文献

Sticky sand
粘性沙
  • DOI:
    10.1038/nmat2131
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Arshad Kudrolli
  • 通讯作者:
    Arshad Kudrolli

Arshad Kudrolli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arshad Kudrolli', 18)}}的其他基金

RAPID: Predicting Coronavirus Disease (COVID-19) Impact with Multiscale Contact and Transmission Mitigation
RAPID:通过多尺度接触和传播缓解来预测冠状病毒病 (COVID-19) 的影响
  • 批准号:
    2030307
  • 财政年份:
    2020
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Folding, crumpling and entangling of sheets and filaments
片材和长丝的折叠、起皱和缠结
  • 批准号:
    2005090
  • 财政年份:
    2020
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
Intruder dynamics in fluid saturated granular medium
流体饱和颗粒介质中的入侵动力学
  • 批准号:
    1805398
  • 财政年份:
    2018
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Granular erosion, transport, and dynamic-filtration driven by fluid flow
流体流动驱动的颗粒侵蚀、输送和动态过滤
  • 批准号:
    1335928
  • 财政年份:
    2013
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
MRI-R2: Acquisition of X-Ray Computed Tomography System for Imaging of Heterogeneous Materials
MRI-R2:获取用于异质材料成像的 X 射线计算机断层扫描系统
  • 批准号:
    0959066
  • 财政年份:
    2010
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Structural rearrangements and transport properties of cyclically sheared granular packings
循环剪切颗粒填料的结构重排和输运特性
  • 批准号:
    0853943
  • 财政年份:
    2009
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Principles of Swimming in Viscoelastic Media
合作研究:粘弹性介质中游泳的基本原理
  • 批准号:
    0853942
  • 财政年份:
    2009
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Statistical and Dynamical Properties of Spherical and Non-Spherical Granular Materials
球形和非球形颗粒材料的统计和动力学特性
  • 批准号:
    0605664
  • 财政年份:
    2006
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Particle Diffusion and Mixing during Silo Drainage
筒仓排水过程中的颗粒扩散和混合
  • 批准号:
    0334587
  • 财政年份:
    2004
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
CAREER: Instabilities in the Flow of Dry and Wet Granular Matter
职业:干湿颗粒物质流动的不稳定性
  • 批准号:
    9983659
  • 财政年份:
    2000
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

带PML的高波数散射问题的数值方法研究
  • 批准号:
    11071116
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Research Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Research Grant
Asymptotic behavior of null geodesics near future null infinity and its application
近未来零无穷大零测地线的渐近行为及其应用
  • 批准号:
    22KJ1933
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    2311500
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
  • 批准号:
    23H03354
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
  • 批准号:
    2306327
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Asymptotic analysis of online training algorithms in deep learning
深度学习在线训练算法的渐近分析
  • 批准号:
    2879209
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Studentship
Asymptotic approximation of the large-scale structure of turbulence in axisymmetric jets: a first principle jet noise prediction method
轴对称射流中湍流大尺度结构的渐近逼近:第一原理射流噪声预测方法
  • 批准号:
    EP/W01498X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了