Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
基本信息
- 批准号:EP/Y021983/1
- 负责人:
- 金额:$ 39.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Civil, aerospace and automotive engineering are nowadays facing exciting industrial developments, inspiring new multifunctional and sustainable materials to be implemented within structural components. A key area, experiencing major technological changes, is concerned with design of multi-layered structures which are often characterised by a high contrast in mechanical and geometric properties of the layers. A diverse variety of such composites arises in numerous applications, including lightweight structural components widely exploited in automotive engineering which is currently strongly focused on green car production. In addition, the modern aerospace industry benefits from making use of multi-layered structures incorporating new lightweight multifunctional materials, such as aerogels, providing both thermal and acoustical insulation in aircrafts. In spite of rapidly growing industrial demands, a consistent mathematical approach for modelling of thin elastic laminates with a strong vertical inhomogeneity has not yet been developed. The main reason for this is presence of the contrast in mechanical and geometrical characteristics, resulting in numerous extra problem parameters. Another fundamental problem is that the most practically important low-frequency vibrations of high-contrast laminates manifest novel features which has not been previously observed for homogeneous or weakly inhomogeneous structures. A sophisticated low-frequency response significantly complicates interpretation of numerical and experimental data aimed at structural optimisation and non-destructive evaluation.This project will provide a fairly universal approximate model for high-contrast multi-layered thin plates covering a broad range of problem parameters and involving the mathematically consistent equations of the low-frequency motion and the boundary conditions along the edges. The derivation of the boundary conditions is traditionally the main challenge in the rigorous theories for thin elastic structures and have been attempted only within the homogeneous framework.
民用、航空航天和汽车工程如今正面临着令人兴奋的工业发展,激发了新的多功能和可持续材料在结构部件中的应用。经历重大技术变革的一个关键领域涉及多层结构的设计,这些结构的特征通常是层的机械和几何特性的高对比度。各种各样的这种复合材料出现在许多应用中,包括在汽车工程中广泛开发的轻质结构部件,其目前强烈关注绿色汽车生产。此外,现代航空航天工业受益于使用多层结构,该多层结构包含新型轻质多功能材料,例如气凝胶,在飞行器中提供隔热和隔音。尽管快速增长的工业需求,一个一致的数学方法建模的薄弹性层压板与一个强大的垂直不均匀性尚未开发。其主要原因是机械和几何特性的对比,导致许多额外的问题参数。另一个基本问题是,高对比度层压板的最实际重要的低频振动表现出以前没有观察到的均匀或弱不均匀结构的新功能。一个复杂的低频响应显着复杂的数值和实验数据的解释,旨在结构优化和非破坏性evaluation.This项目将提供一个相当普遍的近似模型,高对比度的多层薄板,涵盖了广泛的问题参数,并涉及数学上一致的方程的低频运动和边界条件沿沿着的边缘。边界条件的推导传统上是薄弹性结构的严格理论中的主要挑战,并且仅在均匀框架内进行了尝试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ludmila Prikazchikova其他文献
On the approximate schemes for the evaluation of the acoustic radiation by a thin elastic layer
- DOI:
10.1007/s00161-025-01365-0 - 发表时间:
2025-03-12 - 期刊:
- 影响因子:2.200
- 作者:
Julius Kaplunov;Ludmila Prikazchikova;Sheeru Shamsi - 通讯作者:
Sheeru Shamsi
On the refined boundary condition at the edge of a thin elastic strip supported by a Winkler-type foundation under antiplane shear deformation
在反平面剪切变形下由温克勒型地基支撑的薄弹性条带边缘的精细边界条件
- DOI:
10.1016/j.ijengsci.2024.104152 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Ludmila Prikazchikova;Evgeniya Nolde;Wiktoria Miszuris;Julius Kaplunov - 通讯作者:
Julius Kaplunov
Ludmila Prikazchikova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
- 批准号:
23H01341 - 财政年份:2023
- 资助金额:
$ 39.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of atomic-resolution electron tomography for grain boundary analysis
用于晶界分析的原子分辨率电子断层扫描技术的发展
- 批准号:
23K13546 - 财政年份:2023
- 资助金额:
$ 39.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 39.67万 - 项目类别:
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
- 批准号:
22KK0230 - 财政年份:2023
- 资助金额:
$ 39.67万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
CRSNS: Development of EEG/MEG Source Reconstruction with Fast Multipole Method
CRSNS:使用快速多极方法进行 EEG/MEG 源重建的开发
- 批准号:
10835137 - 财政年份:2023
- 资助金额:
$ 39.67万 - 项目类别:
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 39.67万 - 项目类别:
Standard Grant
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 39.67万 - 项目类别:
Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 39.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pathophysiological analysis of the necrotic boundary to predict collapse in osteonecrosis of the femoral head
坏死边界的病理生理分析预测股骨头坏死塌陷
- 批准号:
22K20963 - 财政年份:2022
- 资助金额:
$ 39.67万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
- 批准号:
22K03374 - 财政年份:2022
- 资助金额:
$ 39.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)