SusChEM: Ionic Conduction Mechanisms in Low-cost and Rare-earth-free Fast Ion Conductors

SusChEM:低成本、无稀土快离子导体中的离子传导机制

基本信息

  • 批准号:
    1508404
  • 负责人:
  • 金额:
    $ 29.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractFast ion conductors are an essential component of electrochemical devices such as fuel cells, solid-state batteries, gas separation membranes, and chemical sensors. An important criterion for ionic conductors to be suitable for such high-performance devices is high ionic conductivity at operating temperatures. In recent years, there has been a growing interest in developing sustainable, cost-effective, and high-conductivity oxide-ion conductors for intermediate-temperature solid-oxide fuel cells, one of the most efficient and cleanest energy conversion and storage technologies. One strategy is to design rare-earth-free fast-ion conductors. With support from the Solid State and Materials Chemistry Program in the Division of Materials Research at NSF, this project focuses on investigating the fundamental mechanisms of ionic conduction and revealing the relationship of chemical structure and conductivity in newly developed fast-ion conductors. The findings from this study provide valuable guidelines for rationally designing fast oxide-ion conductors. The research also develops unique characterization tools and protocols which are to be incorporated into the National High Magnetic Field Laboratory and made available to national and international users. Students assigned to this project, including undergraduates and a female minority graduate student, are provided with unique research training opportunities and guidance to advance their academic careers. The principal investigator's team disseminates the key findings and technological developments to the general public by creating educational videos and performing demonstrations at science events. Technical AbstractA new group of cost-effective and rare-earth-free fast ion conductors has been recently discovered. Some have unparalleled ion conductivity for intermediate-temperature solid-oxide fuel cells. The mechanism for such high ion conductivity is nevertheless unknown. This research uses Na-doped strontium silicates as model systems to understand how ions migrate in this class of fast-ion conductors. The study involves three major tasks including synthesis of strontium silicates with controlled alkaline element doping, advanced characterization with high-temperature high-resolution solid-state O-17, Na-23, and Si-29 NMR probing of structural defects and ion dynamics, and electrochemical measurements and computational efforts complementary to NMR characterizations to establish the important linkage between ion conductivity and structural defects.
非技术摘要快离子导体是电化学装置如燃料电池、固态电池、气体分离膜和化学传感器的重要组成部分。 离子导体适用于这种高性能器件的一个重要标准是在工作温度下的高离子电导率。 近年来,人们对开发用于中温固体氧化物燃料电池的可持续的、具有成本效益的和高电导率的氧化物离子导体的兴趣越来越大,中温固体氧化物燃料电池是最有效和最清洁的能量转换和存储技术之一。 一种策略是设计不含稀土的快离子导体。 在NSF材料研究部固态与材料化学计划的支持下,该项目侧重于研究离子传导的基本机制,并揭示新开发的快离子导体中化学结构与电导率的关系。 研究结果为合理设计氧化物快离子导体提供了有价值的指导。 该研究还开发了独特的表征工具和协议,这些工具和协议将被纳入国家高磁场实验室,并提供给国家和国际用户。 分配到这个项目的学生,包括本科生和一名少数民族女研究生,获得了独特的研究培训机会和指导,以促进他们的学术生涯。 首席研究员团队通过制作教育视频和在科学活动中进行演示,向公众传播关键发现和技术发展。 最近发现了一组新的具有成本效益且不含稀土的快离子导体。 其中一些具有无与伦比的离子传导性,可用于中温固体氧化物燃料电池。 然而,这种高离子传导率的机制尚不清楚。 本研究使用Na掺杂的硅酸锶作为模型系统,以了解离子如何在这类快离子导体中迁移。 该研究涉及三个主要任务,包括合成具有受控碱性元素掺杂的硅酸锶,使用高温高分辨率固态O-17,Na-23和Si-29 NMR探测结构缺陷和离子动力学的高级表征,以及电化学测量和计算工作补充NMR表征,以建立离子电导率和结构缺陷之间的重要联系。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan-Yan Hu其他文献

Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction
固态电池中由于锂电镀和电解质还原而产生的枝晶形成
  • DOI:
    10.1038/s41563-024-02094-6
  • 发表时间:
    2025-01-31
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Haoyu Liu;Yudan Chen;Po-Hsiu Chien;Ghoncheh Amouzandeh;Dewen Hou;Erica Truong;Ifeoluwa P. Oyekunle;Jamini Bhagu;Samuel W. Holder;Hui Xiong;Peter L. Gor’kov;Jens T. Rosenberg;Samuel C. Grant;Yan-Yan Hu
  • 通讯作者:
    Yan-Yan Hu
Interrupted anion-network enhanced Lisup+/sup-ion conduction in Lisub3+y/subPOsub4/subIsuby/sub
在 Li₃₊ᵧPO₄Isuby 中,中断的阴离子网络增强了 Li⁺离子传导。
  • DOI:
    10.1016/j.ensm.2022.06.026
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Sawankumar V. Patel;Erica Truong;Haoyu Liu;Yongkang Jin;Benjamin L. Chen;Yan Wang;Lincoln Miara;Ryounghee Kim;Yan-Yan Hu
  • 通讯作者:
    Yan-Yan Hu
ウガンダ・カリンズ森林におけるブルーモンキー(Cercopithecusmitis)による肉食
乌干达卡林斯森林中的蓝猴 (Cercopithecusmitis) 食肉
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Zhang;Tomoaki Ichijo;Yan-Yan Hu;Hong-Wei Zhou;Nobuyasu Yamaguchi;Masao Nasu;Gong-Xiang Chen;田代靖子
  • 通讯作者:
    田代靖子
Hydrogen in energy and information sciences
  • DOI:
    10.1557/s43577-024-00714-9
  • 发表时间:
    2024-04-22
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Heejung W. Chung;Bernadette Cladek;Yong-Yun Hsiau;Yan-Yan Hu;Katharine Page;Nicola H. Perry;Bilge Yildiz;Sossina M. Haile
  • 通讯作者:
    Sossina M. Haile
Integrated therapeutic strategies for various cutaneous malignancies: Advances and challenges of multifunctional microneedle patches toward clinical translation
多种皮肤恶性肿瘤的综合治疗策略:多功能微针贴片迈向临床转化的进展与挑战
  • DOI:
    10.1016/j.cej.2024.153033
  • 发表时间:
    2024-08-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Yan-Yan Hu;Qiang Jin;Ji Wang;Su-Fan Wu;Yong He;Pei-Hong Jin
  • 通讯作者:
    Pei-Hong Jin

Yan-Yan Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan-Yan Hu', 18)}}的其他基金

Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Defects & Disorder for Fast Ion Conduction
职业生涯:利用缺陷
  • 批准号:
    1847038
  • 财政年份:
    2019
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
Correlations of Li Deficiency, Diffusion, and Interfacial Impedance in Solid-State Batteries Probed by In Situ Tracer Exchange NMR and Depth-Profiling MRI Combined with Modeling
通过原位示踪交换 NMR 和深度剖面 MRI 结合建模探测固态电池中锂缺乏、扩散和界面阻抗的相关性
  • 批准号:
    1808517
  • 财政年份:
    2018
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant

相似国自然基金

ionic Hubbard 模型中符号问题与量子相变的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LiNO3 - Ionic Liquids/H2O新型吸收式热泵工质对的物性与应用研究
  • 批准号:
    51506005
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Block Polyelectrolyte Complexes for Controlled Mixed Ionic-Electronic Conduction
职业:用于受控混合离子电子传导的嵌段聚电解质复合物
  • 批准号:
    2237888
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
Exploration of layered fluorides with ionic bonds oriented for superionic conduction
超离子传导离子键层状氟化物的探索
  • 批准号:
    22H02167
  • 财政年份:
    2022
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Effect of Cyclic Mechanical Stress on Ionic Conduction in Composite Polymer Electrolytes for Solid-State Batteries
合作研究:循环机械应力对固态电池复合聚合物电解质离子传导的影响
  • 批准号:
    2125640
  • 财政年份:
    2022
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Cyclic Mechanical Stress on Ionic Conduction in Composite Polymer Electrolytes for Solid-State Batteries
合作研究:循环机械应力对固态电池复合聚合物电解质离子传导的影响
  • 批准号:
    2125192
  • 财政年份:
    2022
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Theoretical investigation of the ionic conduction mechanism between highly concentrated electrolyte and electrode
高浓度电解质与电极之间离子传导机制的理论研究
  • 批准号:
    21J12566
  • 财政年份:
    2021
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dominant factor analysis of ionic conduction in solids based on the spectral graph theory
基于谱图理论的固体离子传导主导因素分析
  • 批准号:
    20H02422
  • 财政年份:
    2020
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of Ionic Conduction Mechanism of Perovskite-type Oxides with Unusually High-valence Iron Ions
异常高价铁离子钙钛矿型氧化物的离子传导机理研究
  • 批准号:
    19K15585
  • 财政年份:
    2019
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of ionic liquid-type anionic polymer materials for new ion conduction pathways
新型离子传导通道离子液体型阴离子聚合物材料的开发
  • 批准号:
    19H02783
  • 财政年份:
    2019
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Atomic scale structure and mechanism of grain-boundary ionic conduction in solid electrolytes
固体电解质中的原子尺度结构和晶界离子传导机制
  • 批准号:
    19H02801
  • 财政年份:
    2019
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ionic Conduction Analysis across Single Grain Boundary
跨单晶界的离子传导分析
  • 批准号:
    18K04708
  • 财政年份:
    2018
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了