Ultra-Low Power Inertial MEMS for Pervasive Wearable Computing
用于普遍可穿戴计算的超低功耗惯性 MEMS
基本信息
- 批准号:1509063
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultra-Low Power Inertial MEMS for Pervasive Wearable ComputingBrief description of project Goals:The project enables ultra-low power accelerometers and gyroscopes for wearable computers with prolonged battery lifetime.Abstract:Nontechnical Advances in technology have led to the development of wearable sensing, computing and communication devices, enabling a large variety of new applications in several domains, including wellness and health care. Monitoring human movements and motor functions perhaps is considered one of the most important applications. Despite their tremendous potential to impact our lives, such systems face a number of hurdles to become a reality. The enabling sensors often demand a large amount of energy, requiring sizable batteries. This creates challenges for further miniaturization. The goal of this research is to enable ultra-low power sensors and DSP's for wearable computers operating with a very small power budget enabling weeks and months of battery lifetime. The proposed research will empower a large set of applications in health care and wellness domains including gait analysis, fall prevention and monitoring physical exercise. This project will ideally reduce the size and weight of wearable computers significantly, enabling many ubiquitous health monitoring applications. It can dramatically improve the quality of health monitoring practice and medical research, empowering more applications that are not currently feasible. This project targets a very important health care application for gait monitoring. Considering the importance of wearable gait monitoring applications and our efforts in reducing the form factor of the sensors that will justify their true ubiquitous use, semiconductor companies will produce billions of chips for wearable computers.TechnicalThe proposed research takes advantage of novel electromechanical designs and state of the art micromachining technologies to fabricate contact-based (full or tunneling) inertial sensors with overall dimensions in the hundreds of microns to a few millimeters. Such devices are essentially comprised of a number of acceleration switches requiring a small bias voltage of around 1V and no steady current flow to operate. The output of the sensor is turned ON/OFF by connecting/disconnecting the bias voltage to the device output electrode depending on the accelerations and/or rotation rates the device observes. This is contrary to the existing inertial sensors that provide an analog output requiring significant further processing in the analog domain with a power budget of 1mW which turns out to be the bottleneck. The proposed new class of devices can be directly interfaced with digital readout/control electronics. The proposed research will also enable a new set of methodologies that co-jointly perform the signal processing and optimize the power of sensors and digital circuitry by controlling the sampling frequency and bit resolution of sensors in real-time. The proposed research will be validated in the context of an important health monitoring application: gait analysis using wrist-worn and shoe-worn sensors.
超低功耗惯性MEMS的普及可穿戴ComputingBrief项目目标的描述:该项目使超低功耗加速度计和陀螺仪的可穿戴计算机与延长电池寿命。摘要:非技术的技术进步导致了可穿戴传感,计算和通信设备的发展,使大量的各种新的应用在几个领域,包括健康和医疗保健。监测人体运动和运动功能可能被认为是最重要的应用之一。尽管这些系统具有影响我们生活的巨大潜力,但要成为现实还面临许多障碍。使能传感器通常需要大量的能量,需要相当大的电池。这为进一步小型化带来了挑战。这项研究的目标是使超低功耗传感器和DSP的可穿戴计算机运行在一个非常小的功率预算,使电池寿命数周和数月。拟议的研究将为医疗保健和健康领域的大量应用提供支持,包括步态分析,跌倒预防和监测体育锻炼。该项目将理想地显著减小可穿戴计算机的尺寸和重量,从而实现许多无处不在的健康监测应用。它可以大大提高健康监测实践和医学研究的质量,使更多的应用程序,目前是不可行的。该项目针对步态监测的一个非常重要的医疗保健应用。考虑到可穿戴步态监测应用的重要性,以及我们在降低传感器外形尺寸方面所做的努力,这将证明传感器真正无处不在的使用是合理的,半导体公司将为可穿戴计算机生产数十亿芯片。技术拟议的研究利用新颖的机电设计和最先进的微加工技术,(全或隧穿)惯性传感器,其总体尺寸在几百微米到几毫米之间。这种器件基本上由多个加速开关组成,需要大约1V的小偏置电压,并且没有稳定的电流流动来操作。根据设备观察到的加速度和/或旋转速率,通过连接/断开偏置电压到设备输出电极来打开/关闭传感器的输出。这与现有的惯性传感器相反,现有的惯性传感器提供的模拟输出需要在模拟域中进行大量的进一步处理,功率预算为1 mW,这是瓶颈。所提出的新类别的设备可以直接与数字读出/控制电子接口。拟议的研究还将实现一套新的方法,通过实时控制传感器的采样频率和位分辨率,共同执行信号处理并优化传感器和数字电路的功率。所提出的研究将在一个重要的健康监测应用的背景下进行验证:使用腕戴和鞋戴传感器的步态分析。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roozbeh Jafari其他文献
Pulse2AI: An Adaptive Framework to Standardize and Process Pulsatile Wearable Sensor Data for Clinical Applications
Pulse2AI:用于标准化和处理临床应用脉动可穿戴传感器数据的自适应框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.8
- 作者:
Sicong Huang;Roozbeh Jafari;Bobak J. Mortazavi - 通讯作者:
Bobak J. Mortazavi
ArterialNet: Arterial Blood Pressure Reconstruction
ArterialNet:动脉血压重建
- DOI:
10.1109/bhi58575.2023.10313518 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sicong Huang;Roozbeh Jafari;Bobak J. Mortazavi - 通讯作者:
Bobak J. Mortazavi
Early adverse physiological event detection using commercial wearables: challenges and opportunities
使用商用可穿戴设备进行早期不良生理事件检测:挑战与机遇
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:15.2
- 作者:
Jesse Phipps;Bryant Passage;Kaan Sel;Jonathan Martinez;Milad Saadat;Teddy Koker;Natalie Damaso;Shakti Davis;Jeffrey Palmer;Kajal T. Claypool;Christopher Kiley;Roderic I Pettigrew;Roozbeh Jafari - 通讯作者:
Roozbeh Jafari
Wearable Bioimpedance Sensor Characterization for Blood Flow Monitoring
用于血流监测的可穿戴生物阻抗传感器表征
- DOI:
10.1109/biocas58349.2023.10388901 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaan Sel;Seyed Ali Ghazi Asgar;Deen Osman;Peiyun Wu;Roozbeh Jafari - 通讯作者:
Roozbeh Jafari
Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
用于精准医疗的数字孪生体的验证、确认和不确定性量化的调查与展望
- DOI:
10.1038/s41746-025-01447-y - 发表时间:
2025-01-17 - 期刊:
- 影响因子:15.100
- 作者:
Kaan Sel;Andrea Hawkins-Daarud;Anirban Chaudhuri;Deen Osman;Ahmad Bahai;David Paydarfar;Karen Willcox;Caroline Chung;Roozbeh Jafari - 通讯作者:
Roozbeh Jafari
Roozbeh Jafari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roozbeh Jafari', 18)}}的其他基金
RAPID: Electronic Tattoos for Detection of Pre-symptoms of Infection
RAPID:用于检测感染前期症状的电子纹身
- 批准号:
2031674 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Design of Motion-Artifact Robust Electronic Tattoos and Software Reconfiguration Methodologies for Bio-impedance Sensing
用于生物阻抗传感的运动神器鲁棒电子纹身和软件重构方法的设计
- 批准号:
1738293 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: CSR Ultra Low Power Architectures for Wearable Computing
职业:适用于可穿戴计算的 CSR 超低功耗架构
- 批准号:
1734039 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Ultra-Low Power Inertial MEMS for Pervasive Wearable Computing
用于普遍可穿戴计算的超低功耗惯性 MEMS
- 批准号:
1649167 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Mentorship and Student-Author Travel Grant for Wireless Health 2012 Conference
2012 年无线健康会议的指导和学生作者旅费资助
- 批准号:
1261409 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
I-Corps: Self Calibration Techniques for Robust Brain Computer Interface
I-Corps:稳健脑机接口的自校准技术
- 批准号:
1338964 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: CSR Ultra Low Power Architectures for Wearable Computing
职业:适用于可穿戴计算的 CSR 超低功耗架构
- 批准号:
1150079 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
EAGER: Methodologies for Tight Integration of Physical and Cyber Models in Power Aware Wearable Computers
EAGER:在功率感知可穿戴计算机中紧密集成物理模型和网络模型的方法
- 批准号:
1138396 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
- 批准号:82002807
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
- 批准号:82003061
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
- 批准号:81873863
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
FuSe-TG: Ultra-low-power and Robust Autonomy of Edge Robotics with 2D Semiconductors
FuSe-TG:采用 2D 半导体的边缘机器人的超低功耗和鲁棒自主性
- 批准号:
2235207 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Achieving low-power and high-performance ultra-scalable processors with novel architecture
通过新颖的架构实现低功耗、高性能的超可扩展处理器
- 批准号:
23H03360 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mignon Ultra-Low-Power Edge AI Semiconductor Chip
Mignon超低功耗边缘AI半导体芯片
- 批准号:
10075703 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
Cross-Layer Energy Optimization with Adaptive Control for Ultra-Low Power IoT Sensor Nodes
针对超低功耗物联网传感器节点的跨层能量优化和自适应控制
- 批准号:
23K11026 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and Development of Ultra-Low Power Consumption IoT Systems
超低功耗物联网系统研发
- 批准号:
23K11063 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Ultra-low loss beamformer and combiner-first technology for lower power, consumption phased arrays
SBIR 第一阶段:超低损耗波束形成器和组合器优先技术,用于降低功耗、消耗相控阵
- 批准号:
2335496 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Next-generation memory analysis and evaluation technology using statistical electrical measurement with ultra-low power consumption, short processing time, and low cost
采用统计电学测量的下一代内存分析评估技术,具有超低功耗、处理时间短、成本低的特点
- 批准号:
23K13372 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Electrochemical Dynamic Midinfrared Metasurface for Ultra-Low Power Wearable Thermoregulation
职业:用于超低功耗可穿戴温度调节的电化学动态中红外超表面
- 批准号:
2324286 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Energy harvesting system using ultra-low voltage electronics for low power wide area distributed energy resources
使用超低压电子设备的能量收集系统,用于低功率广域分布式能源
- 批准号:
22H01465 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ultra low power flexible electronics for next generation wearable devices
适用于下一代可穿戴设备的超低功耗柔性电子产品
- 批准号:
2864500 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Studentship