EAGER: Methodologies for Tight Integration of Physical and Cyber Models in Power Aware Wearable Computers
EAGER:在功率感知可穿戴计算机中紧密集成物理模型和网络模型的方法
基本信息
- 批准号:1138396
- 负责人:
- 金额:$ 5.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wearable computers are gaining significant attention due to their capability to enable a wide variety of new applications in domains such as wellness and health care. Despite their tremendous potential to impact our lives, wearable health monitoring systems face a number of hurdles before becoming a reality. The enabling processors and architectures demand a large amount of energy, requiring sizable batteries. This creates challenges for further miniaturization of the wearable units. This EAGER award is pursuing preliminary research in tiered, model based signal processing that can exploit pre-determined signal templates to enable extreme power optimization. In this approach, signal processing can be performed at several levels, where in each level, only the hardware for a specific template is active. If the template of interest is present, the next level of signal processing will be activated, otherwise hardware components corresponding to the next and the remaining levels will remain inactive. This approach, however, highly depends on the effectiveness of templates. In monitoring human movements, if templates do not accurately represent the physical activity of interest, the system will not exhibit acceptable accuracy. The goal is to develop effective techniques and methodologies to ensure templates adapt to remain valid throughout the operation of the system, accurately representing the corresponding physical movements.The research focuses on speed-insensitive template matching architectures that can reduce the effects of movement variations on signal processing. Timing models for movements and user activity profiles are exploited to monitor the correctness of the signal processing, and tunable parameters decrease or increase the sensitivity of the signal processing. For example, if the user is expected to perform sit to stand at least once every two hours in the day time, and the tiered signal processing has not detected the movement in the past few hours, the sensitivity will be increased, or user interaction and template retraining can be initiated. When performing a movement that has been determined to be of interest, the user can initiate (re)training if the system does not recognize the movement. Effective template generation and on-line retraining are expected to open opportunities to individualize systems and signal processing and to reduce the complexity of storage and processing architectures. This research is expected to provide the groundwork for ongoing design and development of practical ultra low power signal processing architectures, reduce costs of computing platforms for medical sensing, and to enable future progress in areas such as gait and balance monitoring for fall prevention, and in-home movement monitoring for Parkinson?s disease.
可穿戴计算机由于其能够在诸如健康和医疗保健的领域中实现各种各样的新应用的能力而获得显著关注。尽管可穿戴健康监测系统具有影响我们生活的巨大潜力,但在成为现实之前仍面临许多障碍。使能处理器和架构需要大量的能量,需要相当大的电池。这为可穿戴单元的进一步小型化带来了挑战。该EAGER奖项旨在对分层、基于模型的信号处理进行初步研究,这些信号处理可以利用预先确定的信号模板实现极端的功率优化。在这种方法中,信号处理可以在几个级别上执行,其中在每个级别中,只有用于特定模板的硬件是活动的。如果存在感兴趣的模板,则下一级信号处理将被激活,否则对应于下一级和剩余级的硬件组件将保持不活动。 然而,这种方法高度依赖于模板的有效性。在监测人体运动时,如果模板不能准确地表示感兴趣的身体活动,则系统将不会表现出可接受的准确性。目标是开发有效的技术和方法,以确保模板适应保持有效的整个系统的操作,准确地表示相应的物理movement.The研究的重点是速度不敏感的模板匹配架构,可以减少对信号处理的运动变化的影响。运动和用户活动配置文件的定时模型被用来监控信号处理的正确性,并且可调参数降低或增加信号处理的灵敏度。例如,如果预期用户在白天每两个小时至少执行一次坐立,并且分层信号处理在过去几个小时内没有检测到移动,则灵敏度将增加,或者可以发起用户交互和模板再训练。 当执行已确定为感兴趣的运动时,如果系统未识别该运动,则用户可以启动(重新)训练。有效的模板生成和在线再培训有望为个性化系统和信号处理提供机会,并降低存储和处理架构的复杂性。这项研究预计将提供正在进行的实际超低功耗信号处理架构的设计和开发的基础,降低医疗传感的计算平台的成本,并使未来的进展,如步态和平衡监测跌倒预防等领域,并在家中运动监测帕金森?的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roozbeh Jafari其他文献
Pulse2AI: An Adaptive Framework to Standardize and Process Pulsatile Wearable Sensor Data for Clinical Applications
Pulse2AI:用于标准化和处理临床应用脉动可穿戴传感器数据的自适应框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.8
- 作者:
Sicong Huang;Roozbeh Jafari;Bobak J. Mortazavi - 通讯作者:
Bobak J. Mortazavi
ArterialNet: Arterial Blood Pressure Reconstruction
ArterialNet:动脉血压重建
- DOI:
10.1109/bhi58575.2023.10313518 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sicong Huang;Roozbeh Jafari;Bobak J. Mortazavi - 通讯作者:
Bobak J. Mortazavi
Early adverse physiological event detection using commercial wearables: challenges and opportunities
使用商用可穿戴设备进行早期不良生理事件检测:挑战与机遇
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:15.2
- 作者:
Jesse Phipps;Bryant Passage;Kaan Sel;Jonathan Martinez;Milad Saadat;Teddy Koker;Natalie Damaso;Shakti Davis;Jeffrey Palmer;Kajal T. Claypool;Christopher Kiley;Roderic I Pettigrew;Roozbeh Jafari - 通讯作者:
Roozbeh Jafari
Wearable Bioimpedance Sensor Characterization for Blood Flow Monitoring
用于血流监测的可穿戴生物阻抗传感器表征
- DOI:
10.1109/biocas58349.2023.10388901 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaan Sel;Seyed Ali Ghazi Asgar;Deen Osman;Peiyun Wu;Roozbeh Jafari - 通讯作者:
Roozbeh Jafari
Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
用于精准医疗的数字孪生体的验证、确认和不确定性量化的调查与展望
- DOI:
10.1038/s41746-025-01447-y - 发表时间:
2025-01-17 - 期刊:
- 影响因子:15.100
- 作者:
Kaan Sel;Andrea Hawkins-Daarud;Anirban Chaudhuri;Deen Osman;Ahmad Bahai;David Paydarfar;Karen Willcox;Caroline Chung;Roozbeh Jafari - 通讯作者:
Roozbeh Jafari
Roozbeh Jafari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roozbeh Jafari', 18)}}的其他基金
RAPID: Electronic Tattoos for Detection of Pre-symptoms of Infection
RAPID:用于检测感染前期症状的电子纹身
- 批准号:
2031674 - 财政年份:2020
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Design of Motion-Artifact Robust Electronic Tattoos and Software Reconfiguration Methodologies for Bio-impedance Sensing
用于生物阻抗传感的运动神器鲁棒电子纹身和软件重构方法的设计
- 批准号:
1738293 - 财政年份:2017
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
CAREER: CSR Ultra Low Power Architectures for Wearable Computing
职业:适用于可穿戴计算的 CSR 超低功耗架构
- 批准号:
1734039 - 财政年份:2016
- 资助金额:
$ 5.26万 - 项目类别:
Continuing Grant
Ultra-Low Power Inertial MEMS for Pervasive Wearable Computing
用于普遍可穿戴计算的超低功耗惯性 MEMS
- 批准号:
1509063 - 财政年份:2015
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Ultra-Low Power Inertial MEMS for Pervasive Wearable Computing
用于普遍可穿戴计算的超低功耗惯性 MEMS
- 批准号:
1649167 - 财政年份:2015
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Mentorship and Student-Author Travel Grant for Wireless Health 2012 Conference
2012 年无线健康会议的指导和学生作者旅费资助
- 批准号:
1261409 - 财政年份:2013
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
I-Corps: Self Calibration Techniques for Robust Brain Computer Interface
I-Corps:稳健脑机接口的自校准技术
- 批准号:
1338964 - 财政年份:2013
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
CAREER: CSR Ultra Low Power Architectures for Wearable Computing
职业:适用于可穿戴计算的 CSR 超低功耗架构
- 批准号:
1150079 - 财政年份:2012
- 资助金额:
$ 5.26万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: New Pericyclic Methodologies for the Convergent Synthesis of Complex Ring Systems
职业:复杂环系收敛合成的新周环方法
- 批准号:
2340210 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Continuing Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Continuing Grant
Carbonylation Methodologies and Strategies for Building Complex Chemical Structures
构建复杂化学结构的羰基化方法和策略
- 批准号:
2349014 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
AI-Driven Methodologies for Automating Operations in 5G/6G Networks
用于 5G/6G 网络中自动化操作的人工智能驱动方法
- 批准号:
2903756 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Studentship
ASSESS-DHT: Deveploment and Harmonisation of Methodologies for Assessing Digital Health Technologies un Europe
ASSESS-DHT:欧洲数字医疗技术评估方法的开发和协调
- 批准号:
10106825 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
EU-Funded
ZEBAI - Innovative methodologies for the design of Zero-Emission and cost-effective Buildings enhanced by Artificial Intelligence
ZEBAI - 通过人工智能增强零排放和具有成本效益的建筑设计的创新方法
- 批准号:
10094812 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
EU-Funded
TELEMETRY - Trustworthy mEthodologies, open knowLedgE & autoMated tools for sEcurity Testing of IoT software, haRdware & ecosYstems
遥测 - 值得信赖的方法,开放的知识
- 批准号:
10087006 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
EU-Funded
Neolithic Narratives: examining storytelling methodologies, tools, and technologies for enriched visitor engagement
新石器时代叙事:研究讲故事的方法、工具和技术,以丰富游客的参与度
- 批准号:
2880843 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
Studentship
Exploring the utility of deep learning methodologies in the automated surveying of cliff nesting birds
探索深度学习方法在悬崖筑巢鸟类自动测量中的实用性
- 批准号:
2840623 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
Studentship
RUI: Development of New Reagents and Synthetic Methodologies Based on Hypervalent Iodine Chemistry
RUI:基于高价碘化学的新试剂和合成方法的开发
- 批准号:
2243793 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant