Design of Motion-Artifact Robust Electronic Tattoos and Software Reconfiguration Methodologies for Bio-impedance Sensing

用于生物阻抗传感的运动神器鲁棒电子纹身和软件重构方法的设计

基本信息

项目摘要

Electronic-tattoos (e-tattoos) are ultra-thin, ultra-soft sensors and electronics that can noninvasively adhere to human skin like a temporary transfer tattoo. Compared to the state-of-the-art wearable electronics, e-tattoos offer several exceptional characteristics. First, they conform to the skin and create a tight contact with the human body enabling robust signal measurements. Second, they may allow the skin to breathe eliminating the adverse effect of traditional adhesive patches. Lastly, they do not constrain natural skin motion hence present high degrees of comfort for the user. In other words, the user may "put it on and forget about it". E-tattoos are poised to enable new opportunities for the next generation of ubiquitous, unobtrusive and cost-effective health and wellness monitoring impacting the national health, bringing personalized care the individuals need to their homes. A strategic education and outreach effort focuses on broadening the participation of underrepresented groups in science and engineering via a year-long undergraduate research experience with enhanced graduate school preparation in partnership with Texas A & M University EnMed program and University of Texas-Austin NASCENT NSF Engineering Research Center. Emerging bio-impedance sensing offers new paradigms to capture a number of important physiological signals including heart rate, respiration rate and blood pressure, all around the human wrist. As the most dynamic body part, the wrist is under constant movement. The major challenge in bio-impedance sensing is the negative effects of motion artifacts that corrupt the data, degrade the signal fidelity, and prevent decision making with sufficient confidence. Our project leverages ultra-thin and ultra-soft e-tattoos for bio-impedance sensing on the wrist because e-tattoos enable the most intimate but noninvasive coupling for the electrodes and the human skin, even under severe skin deformation. Our project also explores software reconfiguration methodologies and machine learning techniques to further address the challenges. In particular, we investigate: 1) design and development of an array of submicron-thick, skin-conformable graphene electrode tattoos for the first time, and 2) novel reconfiguration techniques that would eliminate or reduce the noise associated with motion artifacts and enhance the signal fidelity.
电子纹身(e-tattoos)是超薄,超软的传感器和电子产品,可以像临时转移纹身一样非侵入性地粘附在人体皮肤上。与最先进的可穿戴电子产品相比,电子纹身提供了几个特殊的特点。首先,它们与皮肤贴合,并与人体紧密接触,从而实现稳健的信号测量。其次,它们可以允许皮肤呼吸,消除传统粘合剂贴片的不良影响。最后,它们不限制自然的皮肤运动,因此为用户提供高度的舒适度。换句话说,用户可以“穿上它并忘记它”。电子纹身有望为下一代无处不在,不显眼和具有成本效益的健康和健康监测带来新的机会,影响国民健康,为个人提供个性化的家庭护理。战略教育和外展工作的重点是通过为期一年的本科生研究经验,与德克萨斯州A M大学EnMed计划和德克萨斯大学奥斯汀分校合作,扩大代表性不足的群体在科学和工程领域的参与。新兴的生物阻抗感测提供了新的范例来捕获许多重要的生理信号,包括心率、呼吸率和血压,这些信号都在人的手腕周围。手腕作为人体最具活力的部位,处于不断的运动之中。生物阻抗传感的主要挑战是运动伪影的负面影响,这些伪影破坏数据,降低信号保真度,并阻止以足够的信心做出决策。我们的项目利用超薄和超软的电子纹身在手腕上进行生物阻抗感测,因为电子纹身可以实现电极和人体皮肤最亲密但无创的耦合,即使在严重的皮肤变形下。我们的项目还探索了软件重新配置方法和机器学习技术,以进一步应对挑战。特别是,我们调查:1)首次设计和开发了亚微米厚的、与皮肤贴合的石墨烯电极纹身阵列,以及2)新的重新配置技术,该技术将消除或减少与运动伪影相关的噪声并增强信号保真度。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roozbeh Jafari其他文献

Pulse2AI: An Adaptive Framework to Standardize and Process Pulsatile Wearable Sensor Data for Clinical Applications
Pulse2AI:用于标准化和处理临床应用脉动可穿戴传感器数据的自适应框架
ArterialNet: Arterial Blood Pressure Reconstruction
ArterialNet:动脉血压重建
Early adverse physiological event detection using commercial wearables: challenges and opportunities
使用商用可穿戴设备进行早期不良生理事件检测:挑战与机遇
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
    Jesse Phipps;Bryant Passage;Kaan Sel;Jonathan Martinez;Milad Saadat;Teddy Koker;Natalie Damaso;Shakti Davis;Jeffrey Palmer;Kajal T. Claypool;Christopher Kiley;Roderic I Pettigrew;Roozbeh Jafari
  • 通讯作者:
    Roozbeh Jafari
Wearable Bioimpedance Sensor Characterization for Blood Flow Monitoring
用于血流监测的可穿戴生物阻抗传感器表征
Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
用于精准医疗的数字孪生体的验证、确认和不确定性量化的调查与展望
  • DOI:
    10.1038/s41746-025-01447-y
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Kaan Sel;Andrea Hawkins-Daarud;Anirban Chaudhuri;Deen Osman;Ahmad Bahai;David Paydarfar;Karen Willcox;Caroline Chung;Roozbeh Jafari
  • 通讯作者:
    Roozbeh Jafari

Roozbeh Jafari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roozbeh Jafari', 18)}}的其他基金

RAPID: Electronic Tattoos for Detection of Pre-symptoms of Infection
RAPID:用于检测感染前期症状的电子纹身
  • 批准号:
    2031674
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: CSR Ultra Low Power Architectures for Wearable Computing
职业:适用于可穿戴计算的 CSR 超低功耗架构
  • 批准号:
    1734039
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Ultra-Low Power Inertial MEMS for Pervasive Wearable Computing
用于普遍可穿戴计算的超低功耗惯性 MEMS
  • 批准号:
    1509063
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Ultra-Low Power Inertial MEMS for Pervasive Wearable Computing
用于普遍可穿戴计算的超低功耗惯性 MEMS
  • 批准号:
    1649167
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mentorship and Student-Author Travel Grant for Wireless Health 2012 Conference
2012 年无线健康会议的指导和学生作者旅费资助
  • 批准号:
    1261409
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Self Calibration Techniques for Robust Brain Computer Interface
I-Corps:稳健脑机接口的自校准技术
  • 批准号:
    1338964
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: CSR Ultra Low Power Architectures for Wearable Computing
职业:适用于可穿戴计算的 CSR 超低功耗架构
  • 批准号:
    1150079
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER: Methodologies for Tight Integration of Physical and Cyber Models in Power Aware Wearable Computers
EAGER:在功率感知可穿戴计算机中紧密集成物理模型和网络模型的方法
  • 批准号:
    1138396
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Long-Term, User-Friendly, and Motion-Artifact-Free Heart Monitoring
I-Corps:长期、用户友好且无运动伪影的心脏监测
  • 批准号:
    2328471
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Machine learning approach for motion artifact removal in calcium imaging of neural activity
用于消除神经活动钙成像中运动伪影的机器学习方法
  • 批准号:
    572733-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
SBIR Phase I: Motion artifact management for accurate and continuous non-invasive blood pressure monitoring
SBIR 第一阶段:运动伪影管理,实现准确、连续的无创血压监测
  • 批准号:
    2151591
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Fully-Customizable Wireless Wearable EEG Monitoring Platform with Motion Artifact Resilience and Input-Adaptive Active-Electrode Recording
完全可定制的无线可穿戴脑电图监测平台,具有运动伪影弹性和输入自适应有源电极记录
  • 批准号:
    571248-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Idea to Innovation
Fully-Analog Motion Artifact Elimination Circuit for Compact and Low Power A-ECG Monitoring Devices
适用于紧凑型低功耗 A-ECG 监测设备的全模拟运动伪影消除电路
  • 批准号:
    10374161
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Fully-Analog Motion Artifact Elimination Circuit for Compact and Low Power A-ECG Monitoring Devices
适用于紧凑型低功耗 A-ECG 监测设备的全模拟运动伪影消除电路
  • 批准号:
    10218893
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Exploring optimal measurement methods to exploit the high motion artifact tolerance of visible light photoplethysmographs
探索最佳测量方法以利用可见光光电体积描记器的高运动伪影容限
  • 批准号:
    18K12070
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Characterization of a Motion-Artifact-Insensitive EEG Monitoring Device
运动伪迹不敏感脑电图监测装置的开发和表征
  • 批准号:
    525336-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Motion, Artifact Cancelling MIMO Method for Ambulatory Respiratory Rate Monitorin
用于动态呼吸频率监测的运动、伪影消除 MIMO 方法
  • 批准号:
    8582895
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
Motion, Artifact Cancelling MIMO Method for Ambulatory Respiratory Rate Monitorin
用于动态呼吸频率监测的运动、伪影消除 MIMO 方法
  • 批准号:
    8702170
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了