Resonant acousto-optic devices in silicon for ultra-low power optical modulation and non-reciprocity

用于超低功率光调制和非互易性的硅谐振声光器件

基本信息

  • 批准号:
    1509107
  • 负责人:
  • 金额:
    $ 38.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Resonant acousto-optic devices in silicon for ultra-low power optical modulation and non-reciprocity The objective of this program is to combine two major strands of research in chip-scale nanotechnology to address long-standing practical problems in silicon optical circuits. By merging the advances in circuit technologies developed for controlling the flow of light on a chip, with the invention of nanodevices capable of generating and detecting high frequency mechanical vibrations, this program aims to develop a remarkable class of new optical devices. The backbone of the Internet is entirely based on systems that use light and fiber optics to efficiently send large amounts of data quickly over vast distances. In the last decade, the rise of cloud computing, data centers, and ubiquitous high bandwidth wireless has led to an effort to increase our ability to perform more integrated and complex routing and modulation of optical data. This has led to several successful demonstrations of complex photonic circuits on Silicon and in other semiconductor materials. Despite the significant successes of these systems in increasing throughput and efficiency of computing networks, the growth of demand for data in the wider economy and the corresponding growth in information technology energy consumption has completely out-paced parallel technological advances. Therefore, successful new approaches to address these challenges are expected to have a significant economic as well as environmental impact. Currently, most high-speed optical switches and modulators, as well as all major industrial research efforts, are based on using electrons or electric fields to locally change the optical properties in material, leading to electrical control of optical fields. In contrast, this research program explores a novel approach using high frequency mechanical vibrations, or sound, in lieu of electrons to control the propagation of light. Remarkably, recent calculations and experimental results suggest the possibility of making optical high-speed modulators that operate nearly a thousand times more efficiently than state-of-the-art laboratory demonstrations, and more than one hundred thousand times more efficiently than commonly deployed technologies. This program will develop devices that experimentally demonstrate the potential of using sound to process light. Finally, in its later stage, this program will spearhead the development of a fundamental device that has been lacking from the optical circuit designer?s toolbox: the optical circulator. By dynamically modifying the properties of an optical structure with sound, it is possible to operate in a mode where light can propagate in only one direction and is inhibited from flowing backwards. This significantly simplifies the design of robust multi-element systems and can lead to new types of optical circuitry that are far less difficult to scale up.The core concepts of this proposal are centered around the following recent technological developments: 1) simultaneous localization of light and motion leads to extremely efficient modulation of light in a micron-scale package, 2) microwave capacitive transduction of high frequency mechanical waves via nanopatterened transducers allows transduction frequencies into the GHz and above, 3) optical filters modulated at high frequencies can have highly non-trivial and tailorable responses based on the amplitude and phase of the drives and can be utilized for filter-shaping and non-reciprocal photon propagation engineering. This program will demonstrate ultra-low power (attojoule/bit) acousto-optic modulators and switches with application in data center and wireless back-end optical networks. The core technology to be developed is a way to efficiently electromechanically modulate photonic crystal cavities at frequencies up to 10 GHz. Finally, in its later phase, this program will develop novel devices utilizing mechanically modulated cavities to break time-reversal symmetry in photonic circuits enabling a new type of chip-scale photonic circulator as well as other interesting non-reciprocal elements.
硅中用于超低功率光调制和非互易性的谐振声光器件该计划的目标是将芯片级纳米技术的两大研究方向联合收割机结合起来,以解决硅光路中长期存在的实际问题。通过将为控制芯片上的光流动而开发的电路技术的进步与能够产生和检测高频机械振动的纳米器件的发明相结合,该计划旨在开发一类非凡的新型光学器件。互联网的主干完全基于使用光和光纤的系统,以有效地在远距离上快速发送大量数据。在过去的十年中,云计算、数据中心和无处不在的高带宽无线的兴起促使人们努力提高我们执行更集成、更复杂的光数据路由和调制的能力。这导致了硅和其他半导体材料上复杂光子电路的几次成功演示。尽管这些系统在提高计算网络的吞吐量和效率方面取得了重大成功,但更广泛的经济中对数据的需求的增长以及信息技术能耗的相应增长已经完全超过了并行的技术进步。因此,成功应对这些挑战的新方法预计将产生重大的经济和环境影响。 目前,大多数高速光开关和调制器以及所有主要的工业研究工作都是基于使用电子或电场来局部改变材料中的光学特性,从而实现对光场的电气控制。相比之下,这项研究计划探索了一种新的方法,使用高频机械振动或声音代替电子来控制光的传播。值得注意的是,最近的计算和实验结果表明,有可能使光学高速调制器的操作效率比最先进的实验室演示高出近一千倍,比通常部署的技术高出十万倍。该计划将开发实验证明利用声音处理光的潜力的设备。最后,在其后期阶段,该计划将率先发展的基本设备,一直缺乏从光路设计师?的工具箱:光环行器。通过利用声音动态地修改光学结构的性质,可以在光仅可以在一个方向上传播并且被阻止向后流动的模式下操作。这大大简化了稳健的多元件系统的设计,并可产生新型的光学电路,其扩展难度要小得多。该提案的核心概念围绕以下最新技术发展:1)光和运动的同时定位导致在微米级封装中极其有效的光调制,2)高频机械波经由纳米图案化换能器的微波电容性转换允许转换频率进入GHz和更高,3)在高频下调制的光学滤波器可以具有高度非线性特性。基于驱动器的幅度和相位的微不足道的和可定制的响应,并且可以用于滤波器整形和非互易光子传播工程。该计划将展示超低功耗(阿焦耳/位)声光调制器和开关在数据中心和无线后端光网络中的应用。待开发的核心技术是一种在高达10 GHz的频率下有效地机电调制光子晶体腔的方法。最后,在其后期阶段,该计划将开发利用机械调制腔打破光子电路中的时间反转对称性的新型器件,从而实现新型芯片级光子环行器以及其他有趣的非互易元件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Safavi-Naeini其他文献

Amir Safavi-Naeini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Safavi-Naeini', 18)}}的其他基金

CAREER: Quantum Acoustic Information Processing with Phononic Crystal Devices
职业:使用声子晶体器件进行量子声学信息处理
  • 批准号:
    1941826
  • 财政年份:
    2020
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Optomechanical antennas for silicon photonic beam-steering
用于硅光子波束控制的光机械天线
  • 批准号:
    1808100
  • 财政年份:
    2018
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
CQIS: A Quantum Electro-Optic Converter
CQIS:量子电光转换器
  • 批准号:
    1708734
  • 财政年份:
    2017
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant

相似海外基金

High resolution spectroscopy apparatus for acousto-optic-electric investigations at low temperatures
用于低温声光电研究的高分辨率光谱仪
  • 批准号:
    494822818
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Major Research Instrumentation
Explore and demonstrate strong acousto-optic interactions at multi-GHZ frequencies for a wide variety of applications
探索并展示针对各种应用的多 GHZ 频率下的强声光相互作用
  • 批准号:
    2611199
  • 财政年份:
    2021
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Studentship
Interferometric, acousto-optic modulated diffuse correlation spectroscopy @ 1064 nm (AOM-iDCS) toward higher sensitivity, non-invasive measurement of cerebral blood flow
干涉、声光调制漫相关光谱 @ 1064 nm (AOM-iDCS) 实现更高灵敏度、非侵入性脑血流测量
  • 批准号:
    10065091
  • 财政年份:
    2020
  • 资助金额:
    $ 38.5万
  • 项目类别:
Interferometric, acousto-optic modulated diffuse correlation spectroscopy @ 1064 nm (AOM-iDCS) toward higher sensitivity, non-invasive measurement of cerebral blood flow
干涉、声光调制漫相关光谱 @ 1064 nm (AOM-iDCS) 实现更高灵敏度、非侵入性脑血流测量
  • 批准号:
    10251073
  • 财政年份:
    2020
  • 资助金额:
    $ 38.5万
  • 项目类别:
Optimization and dissemination of non-linear Acousto-Optic Lens two-photon microscopy for high speed multiscale 3D imaging
用于高速多尺度 3D 成像的非线性声光透镜双光子显微镜的优化和推广
  • 批准号:
    10005501
  • 财政年份:
    2019
  • 资助金额:
    $ 38.5万
  • 项目类别:
Optimization and dissemination of non-linear Acousto-Optic Lens two-photon microscopy for high speed multiscale 3D imaging
用于高速多尺度 3D 成像的非线性声光透镜双光子显微镜的优化和推广
  • 批准号:
    10240525
  • 财政年份:
    2019
  • 资助金额:
    $ 38.5万
  • 项目类别:
Development and dissemination of high speed 3D acousto-optic lens two-photon microscopy for in vivo imaging
用于体内成像的高速 3D 声光透镜双光子显微镜的开发和推广
  • 批准号:
    9356588
  • 财政年份:
    2016
  • 资助金额:
    $ 38.5万
  • 项目类别:
Beam shaping of ultrashort laser pulses by means of acousto-optic deflection and refraction
通过声光偏转和折射对超短激光脉冲进行光束整形
  • 批准号:
    278658739
  • 财政年份:
    2015
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Research Grants
Acousto-optic Theragnostic Approach for Chronic Wound Management
慢性伤口处理的声光治疗诊断方法
  • 批准号:
    8274743
  • 财政年份:
    2010
  • 资助金额:
    $ 38.5万
  • 项目类别:
Acousto-optic Theragnostic Approach for Chronic Wound Management
慢性伤口处理的声光治疗诊断方法
  • 批准号:
    8464100
  • 财政年份:
    2010
  • 资助金额:
    $ 38.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了