CQIS: A Quantum Electro-Optic Converter

CQIS:量子电光转换器

基本信息

  • 批准号:
    1708734
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Quantum information science promises fundamentally new and vastly more powerful paradigms of computation, sensing, and communications. It also necessitates new classes of devices that are capable of processing quantum signals. One promising approach to engineered quantum systems uses low-temperature superconducting circuits to perform quantum information processing. These quantum machines are now being developed actively in academic, government, and industrial labs around the world. However, there is no way to connect these systems to one another across more than a few inches while preserving their important quantum properties. Creating links that traverse longer distances and leave the low temperature environments of the qubits demands converting the quantum information from a form suited for processing to another form suited for transmission, and vice versa. In fact, all computation, sensing, and communication systems depend on devices that convert information from one form to another. The lack of this capability in the quantum domain impedes the emergence of truly compelling quantum technologies that promise to perform tasks beyond the means of today's technologies. The proposed research effort is focused on creating such a capability to address a basic and long-standing challenge in engineering science. The program will develop and demonstrate a device that can convert quantum information across the electromagnetic spectrum while preserving its important quantum properties. Such a device, a quantum electro-optic converter, will convert information between optical photons capable of travelling long distances, and microwave photons in low-temperature superconducting circuits being used to implement the first quantum computers. Much like the electro-optic modulators that enable the Internet, quantum electro-optic converters may someday enable the quantum Internet.The objective of this research is to develop a device that can interconvert quantum information between optical and microwave frequencies. The approach is to fabricate high-Q optical cavities and microwave superconducting cavities on the same electro-optical substrate, heterogeneously integrated silicon on lithium niobate, and to generate interactions between excitations in the two cavities. To achieve this, recently developed techniques for creating high-Q electro-optic photonic crystal cavities, techniques for making high-Q superconducting inductors with very low stray capacitance, as well as theoretical insight on perfect quantum state conversion methods will be used. The PI's lab will develop the technology for quantum electro-optic converters by advancing and synthesizing techniques from photonics, heterogeneous integration, superconducting circuits, and cryogenic optical and microwave experiments to realize this vision. The quantum electro-optic converter being developed in this program promises to 1) connect these quantum machines to each other, 2) allow optical access to quantum nonlinearities at microwave frequencies, and 3) to simplify their scaling to larger numbers of superconducting qubits by allowing multiplexing of many microwave signals over an optical fiber. This will have a major impact on experimental quantum information science. Finally, the device will demonstrate for the first time quantum optical control of microwave circuits using laser light, which can enable new and unforeseen types of quantum sensing and communications capabilities at microwave frequencies.
量子信息科学承诺从根本上新的和更强大的计算,传感和通信的范例。它还需要能够处理量子信号的新设备。工程量子系统的一种有前途的方法是使用低温超导电路来执行量子信息处理。这些量子机器现在正在世界各地的学术,政府和工业实验室中积极开发。然而,没有办法将这些系统连接到超过几英寸的地方,同时保持它们重要的量子特性。创建跨越更长距离并离开量子位的低温环境的链接需要将量子信息从适合处理的形式转换为适合传输的另一种形式,反之亦然。事实上,所有的计算、传感和通信系统都依赖于将信息从一种形式转换为另一种形式的设备。量子领域缺乏这种能力,阻碍了真正引人注目的量子技术的出现,这些技术有望执行超出当今技术手段的任务。拟议的研究工作的重点是建立这样一种能力,以解决工程科学中的一个基本和长期的挑战。该计划将开发和演示一种设备,该设备可以在电磁频谱上转换量子信息,同时保留其重要的量子特性。这种设备,量子电光转换器,将在能够长距离传播的光子和用于实现第一台量子计算机的低温超导电路中的微波光子之间转换信息。就像电光调制器,使互联网,量子电光转换器可能有一天使量子互联网。本研究的目标是开发一种设备,可以相互转换量子信息之间的光学和微波频率。该方法是在相同的电光衬底上制作高Q光学腔和微波超导腔,异质集成硅在LiNbO3上,并在两个腔中的激发之间产生相互作用。为了实现这一目标,最近开发的技术,用于创建高Q电光光子晶体腔,技术,使高Q超导电感器具有非常低的杂散电容,以及理论上的见解完美的量子态转换方法将被使用。PI的实验室将通过推进和综合光子学、异质集成、超导电路以及低温光学和微波实验的技术来开发量子电光转换器技术,以实现这一愿景。该计划中正在开发的量子电光转换器承诺1)将这些量子机器相互连接,2)允许在微波频率下对量子非线性进行光学访问,以及3)通过允许在光纤上多路复用许多微波信号来简化它们的缩放到更大数量的超导量子比特。这将对实验量子信息科学产生重大影响。最后,该设备将首次展示使用激光对微波电路的量子光学控制,这可以在微波频率下实现新的和不可预见的量子传感和通信能力。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Communication with Time-Bin Encoded Microwave Photons
  • DOI:
    10.1103/physrevapplied.12.044067
  • 发表时间:
    2019-10-29
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kurpiers, P.;Pechal, M.;Wallraff, A.
  • 通讯作者:
    Wallraff, A.
Superconducting circuit quantum computing with nanomechanical resonators as storage
  • DOI:
    10.1088/2058-9565/aadc6c
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    M. Pechal;Patricio Arrangoiz-Arriola;A. Safavi-Naeini
  • 通讯作者:
    M. Pechal;Patricio Arrangoiz-Arriola;A. Safavi-Naeini
Electrical driving of X-band mechanical waves in a silicon photonic circuit
硅光子电路中 X 波段机械波的电驱动
  • DOI:
    10.1063/1.5042428
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Van Laer, Raphaël;Patel, Rishi N.;McKenna, Timothy P.;Witmer, Jeremy D.;Safavi-Naeini, Amir H.
  • 通讯作者:
    Safavi-Naeini, Amir H.
Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency
  • DOI:
    10.1038/s41467-020-14863-3
  • 发表时间:
    2020-03-03
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jiang, Wentao;Sarabalis, Christopher J.;Safavi-Naeini, Amir H.
  • 通讯作者:
    Safavi-Naeini, Amir H.
A silicon‐organic hybrid platform for quantum microwave-to-optical transduction
用于量子微波-光转换的硅-有机混合平台
  • DOI:
    10.1088/2058-9565/ab7eed
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Witmer, Jeremy D;McKenna, Timothy P;Arrangoiz-Arriola, Patricio;Van Laer, Raphaël;Alex Wollack, E;Lin, Francis;Jen, Alex K-Y;Luo, Jingdong;Safavi-Naeini, Amir H
  • 通讯作者:
    Safavi-Naeini, Amir H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Safavi-Naeini其他文献

Amir Safavi-Naeini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Safavi-Naeini', 18)}}的其他基金

CAREER: Quantum Acoustic Information Processing with Phononic Crystal Devices
职业:使用声子晶体器件进行量子声学信息处理
  • 批准号:
    1941826
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Optomechanical antennas for silicon photonic beam-steering
用于硅光子波束控制的光机械天线
  • 批准号:
    1808100
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Resonant acousto-optic devices in silicon for ultra-low power optical modulation and non-reciprocity
用于超低功率光调制和非互易性的硅谐振声光器件
  • 批准号:
    1509107
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Revealing quantum energy levels of individual quantum dots by electro- static force microscopy
通过静电力显微镜揭示单个量子点的量子能级
  • 批准号:
    546856-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2021
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Revealing quantum energy levels of individual quantum dots by electro- static force microscopy
通过静电力显微镜揭示单个量子点的量子能级
  • 批准号:
    546856-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 39万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Auger, Quantum Electro-Dynamics, Axions and New Technology
俄歇、量子电动力学、轴子和新技术
  • 批准号:
    DP210100795
  • 财政年份:
    2021
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Projects
Revealing quantum energy levels of individual quantum dots by electro- static force microscopy
通过静电力显微镜揭示单个量子点的量子能级
  • 批准号:
    546856-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum Electro-Optic Detector Technology (QuEOD)
量子电光探测器技术(QuEOD)
  • 批准号:
    50765
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    CR&D Bilateral
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了