Optomechanical antennas for silicon photonic beam-steering
用于硅光子波束控制的光机械天线
基本信息
- 批准号:1808100
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Photonic circuits - circuits that control light in the way electronic circuits control electrical currents - are a powerful platform for manipulating and processing optical radiation. They have already revolutionized telecommunications by transmitting and receiving our messages, transactions, and multimedia across vast distances. The goal of this project is to extend this revolution deeper into our daily experience: can we use the same photonic circuits to process, detect, and analyze light that is freely propagating in our environment? To do so we will develop an on-chip means of forming and directing a beam of light off of a chip: a microscopic "radar" for optical fields that can sweep a laser beam across a room and also detect light coming from different directions. Our approach uses the fact that acoustic waves, tiny ripples generated on the surface of a chip, can scatter light in very precise and programmable ways. By discovering new ways to shape the propagation characteristics of both the acoustic and optical waves, we endow photonic circuits with the ability to address their surrounding environment in new and powerful ways. Such an advance will enable sensors to perform optical detection and analysis tasks of major importance in domains ranging from consumer electronics to national security. Our work is especially timely considering the growing presence of autonomous systems, such as self-driving cars, drones, and low-power sensors on mobile devices. These emerging technologies necessitate the development of systems such as the one we are developing as mass-manufacturable, ultra-low-power, and efficient optical sensing and communications platforms. Rapid and low-power control over the direction of a radiating light field is a major challenge in photonics and a key enabling technology for emerging sensors and free-space communication links. This program will determine whether optomechanical interactions in guided-wave structures can be used to implement practical and low-cost beam-steering systems on mass manufacturable silicon chips. The resulting devices will demonstrate orders of magnitude lower power and more rapid beam steering than competing approaches. The objective of this research is to develop and demonstrate silicon photonic circuit to steer a radiating optical beam rapidly with low power using guided optomechanical interactions. The approach is to fabricate waveguides that support highly-confined guided optical and mechanical waves with wavevectors matched such that optomechanical scattering couples guided and radiating light fields. To achieve this, silicon nanophotonic design and fabrication techniques will be extended and combined with emerging nanomechanical guided-wave structures and efficient piezoelectric materials to demonstrate revolutionary new beam-steering capabilities. In contrast to previous work, the demonstrated devices, will enable fast and fully 2D beam-steering of a fixed frequency laser. They will also realize simultaneous generation of multiple beams, low electrical/mechanical power consumption, large field of view, high sidelobe suppression, and large bandwidth. These capabilities are well beyond that which is achievable with current chip-based approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光子电路--以电子电路控制电流的方式控制光的电路--是操纵和处理光辐射的强大平台。它们已经通过远距离传输和接收我们的消息、交易和多媒体,给电信带来了革命性的变化。该项目的目标是将这场革命更深入地扩展到我们的日常体验中:我们是否可以使用相同的光子电路来处理、检测和分析在我们环境中自由传播的光?为了做到这一点,我们将开发一种在芯片上形成和引导光束的芯片方法:一种用于光学领域的微型“雷达”,它可以扫描一束激光穿过房间,也可以探测来自不同方向的光。我们的方法利用了这样一个事实,即声波,即在芯片表面产生的微小涟漪,可以非常精确和可编程的方式散射光。通过发现塑造声波和光波传播特性的新方法,我们赋予光子电路以新的和强大的方式处理其周围环境的能力。这样的进步将使传感器能够执行从消费电子到国家安全等领域的重要光学检测和分析任务。考虑到自动驾驶系统的日益存在,例如自动驾驶汽车、无人机和移动设备上的低功率传感器,我们的工作尤其及时。这些新兴技术需要开发系统,例如我们正在开发的系统,作为可大规模制造的、超低功耗和高效的光学传感和通信平台。快速、低功率地控制辐射光场的方向是光子学中的一大挑战,也是新兴传感器和自由空间通信链路的关键使能技术。该计划将决定导波结构中的光机相互作用是否可以用于在可批量制造的硅芯片上实现实用和低成本的波束控制系统。由此产生的设备将比竞争对手的方法显示出更低的功率和更快的波束控制。这项研究的目的是开发和演示硅光子电路,以利用引导的光机相互作用以低功率快速引导辐射光束。方法是制造支持高度受限的导光和机械波的波导,其中波矢匹配,使得光-机械散射耦合引导和辐射光场。为了实现这一目标,硅纳米光子设计和制造技术将得到扩展,并与新兴的纳米机械导波结构和高效压电材料相结合,以展示革命性的新波束控制能力。与以前的工作不同,所展示的设备将实现固定频率激光的快速和全2D光束操纵。它们还将实现多个波束的同时产生,低电气/机械功耗,大视场,高旁瓣抑制和大带宽。这些能力远远超过了目前基于芯片的方法所能实现的能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acousto-optic modulation of a wavelength-scale waveguide
- DOI:10.1364/optica.413401
- 发表时间:2021-04-20
- 期刊:
- 影响因子:10.4
- 作者:Sarabalis, Christopher J.;Van Laer, Raphael;Safavi-Naeini, Amir H.
- 通讯作者:Safavi-Naeini, Amir H.
Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency
- DOI:10.1038/s41467-020-14863-3
- 发表时间:2020-03-03
- 期刊:
- 影响因子:16.6
- 作者:Jiang, Wentao;Sarabalis, Christopher J.;Safavi-Naeini, Amir H.
- 通讯作者:Safavi-Naeini, Amir H.
Time-of-flight imaging based on resonant photoelastic modulation
- DOI:10.1364/ao.58.002235
- 发表时间:2019-03-20
- 期刊:
- 影响因子:1.9
- 作者:Atalar, Okan;Van Laer, Raphael;Arbabian, Amin
- 通讯作者:Arbabian, Amin
Acousto-optic modulation in lithium niobate on sapphire
- DOI:10.1063/5.0012288
- 发表时间:2020-08-01
- 期刊:
- 影响因子:5.6
- 作者:Sarabalis, Christopher J.;McKenna, Timothy P.;Safavi-Naeini, Amir H.
- 通讯作者:Safavi-Naeini, Amir H.
S-band delay lines in suspended lithium niobate
悬浮铌酸锂中的 S 波段延迟线
- DOI:10.1063/1.5126428
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Sarabalis, Christopher J.;Dahmani, Yanni D.;Cleland, Agnetta Y.;Safavi-Naeini, Amir H.
- 通讯作者:Safavi-Naeini, Amir H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Safavi-Naeini其他文献
Amir Safavi-Naeini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Safavi-Naeini', 18)}}的其他基金
CAREER: Quantum Acoustic Information Processing with Phononic Crystal Devices
职业:使用声子晶体器件进行量子声学信息处理
- 批准号:
1941826 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
CQIS: A Quantum Electro-Optic Converter
CQIS:量子电光转换器
- 批准号:
1708734 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Resonant acousto-optic devices in silicon for ultra-low power optical modulation and non-reciprocity
用于超低功率光调制和非互易性的硅谐振声光器件
- 批准号:
1509107 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
Multiband multibeam antennas for cryogenic cooled satellite ground stations
用于低温冷却卫星地面站的多频段多波束天线
- 批准号:
IE230100323 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Early Career Industry Fellowships
Establishment of Control Scheme of Laser Interferometer for Space Gravitational-Wave Antennas
空间引力波天线激光干涉仪控制方案的建立
- 批准号:
23KJ0737 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Up/down-converter integrated active antennas for next generation wireless systems
用于下一代无线系统的上/下变频器集成有源天线
- 批准号:
23K03840 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-performance and Low-cost Multi-beam Antennas (HLMA)
高性能、低成本多波束天线 (HLMA)
- 批准号:
10075171 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant for R&D
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
- 批准号:
2343964 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Revolutionising UK Satellite Telecoms: A Printable Approach to Helical Antennas in Orbit
彻底改变英国卫星电信:在轨螺旋天线的可打印方法
- 批准号:
10075375 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant for R&D
High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
- 批准号:
2244882 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Creation of inovative research base utilizing Reconstituted Photosynthetic Antennas and Cryo-Electron Microscopy
利用重构光合天线和冷冻电子显微镜创建创新研究基地
- 批准号:
23KJ1834 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Empowering terahertz sources with silicon antennas
使用硅天线增强太赫兹源
- 批准号:
DP220100489 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Projects
Highly miniaturized inherently matched antennas for sensing and communications
用于传感和通信的高度小型化固有匹配天线
- 批准号:
573263-2022 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
University Undergraduate Student Research Awards