Homological Mirror Symmetry for Homogeneous Spaces
齐次空间的同调镜像对称
基本信息
- 批准号:1509141
- 负责人:
- 金额:$ 19.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator's main research interests lie in symplectic topology. Symplectic topology is concerned with global structures of symplectic manifolds, a class of spaces that appeared first as the phase space in classical mechanics. Gromov developed a theory of pseudoholomorphic curves, which has led to a number of advancements in symplectic topology, including a class of symplectic invariants now known as Gromov-Witten invariants. More sophisticated invariants, namely Fukaya categories, are the subject of mainstream research. Much of this research arises from predictions made by physicists under the name of mirror symmetry, an area of both mathematics and physics that remains largely conjectural. These conjectures are striking as they have been understood to predict a rather general correspondence between symplectic geometry and algebraic geometry - a huge field of mathematics whose roots go back to ancient times. Various questions one may ask about the geometry of a symplectic manifold can be answered by studying instead the algebraic geometry of a different manifold (its "mirror"), and vice-versa.This project will be concerned with a study of a mirror theory to the classical Bott-Borel-Weil construction in algebraic geometry. Bott-Borel-Weil gives a geometric description of all finite dimensional, irreducible representations of semi-simple Lie groups in terms of equivariant vector bundles on the corresponding homogeneous spaces. The latter are Fano varieties, for which Kontsevich's homological mirror symmetry has been studied extensively over the past decade. In particular, the predicted mirror partner to such varieties is an explicitly known Landau-Ginzburg model. Homological mirror symmetry suggests that there should be Lagrangian submanifolds, mirroring the equivariant vector bundles, and Floer cohomology of pairs of such Lagrangians should form the underlying vector space of a representation of the Lie group. In a recent work (jointly with J. Pascaleff), PI defined the notion of an equivariant Lagrangian brane where equivariance is to be understood with respect to an algebraic action of a Lie algebra on the mirror variety. In addition, the simplest non-trivial example of the aforementioned mirror theory to Bott-Borel-Weil construction was worked out. The current project will extend these constructions to the case of an arbitrary semisimple Lie algebra with the main motivation being the identification of a canonical basis of representations coming from intersections of Lagrangian submanifolds.
首席研究员的主要研究兴趣在于辛拓扑。辛拓扑研究辛流形的全局结构,辛流形是最早作为相空间出现在经典力学中的一类空间。Gromov发展了伪全纯曲线理论,这导致了辛拓扑的许多进步,包括一类辛不变量,现在被称为Gromov- witten不变量。更复杂的不变量,即深谷范畴,是主流研究的主题。这方面的研究大多源于物理学家以镜像对称的名义所做的预测,镜像对称是数学和物理学的一个领域,在很大程度上仍然是推测性的。这些猜想是惊人的,因为它们被理解为预测了辛几何和代数几何之间相当普遍的对应关系——这是一个巨大的数学领域,其根源可以追溯到古代。人们可能会问的关于辛流形几何的各种问题,可以通过研究不同流形(它的“镜像”)的代数几何来回答,反之亦然。本项目将研究代数几何中经典的bot - borel - weil构造的镜像理论。bot - borel - weil给出了相应齐次空间上半简单李群的所有有限维、不可约表示的等变向量束的几何描述。后者是Fano变体,Kontsevich的同调镜像对称性在过去十年中得到了广泛的研究。特别是,预测的镜像伙伴,这些品种是明确已知的朗道-金兹堡模型。同调镜像对称表明,应该有拉格朗日子流形,镜像等变向量束,并且这些拉格朗日对的花上同调应该形成李群表示的基础向量空间。在最近的一项工作中(与J. Pascaleff共同),PI定义了等变拉格朗日膜的概念,其中等变是关于李代数在镜像变化上的代数作用来理解的。此外,将上述镜像理论应用于bot - borel - weil构造,给出了最简单的非平凡例子。当前的项目将这些结构扩展到任意半简单李代数的情况下,其主要动机是识别来自拉格朗日子流形相交的表示的规范基。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanki Lekili其他文献
Yanki Lekili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanki Lekili', 18)}}的其他基金
New Frontiers in Symplectic Topology
辛拓扑的新领域
- 批准号:
EP/W015889/1 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Research Grant
相似海外基金
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 19.9万 - 项目类别:
Research Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Fellowship Award
Brauer group and homological mirror symmetry
布劳尔群和同调镜像对称
- 批准号:
23KJ0341 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
DERIVED CATEGORY METHODS IN ARITHMETIC: AN APPROACH TO SZPIRO'S CONJECTURE VIA HOMOLOGICAL MIRROR SYMMETRY AND BRIDGELAND STABILITY CONDITIONS
算术中的派生范畴方法:通过同调镜像对称性和布里奇兰稳定性条件推导SZPIRO猜想
- 批准号:
EP/V047299/1 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
Research Grant
Conference on Homological Mirror Symmetry
同调镜像对称会议
- 批准号:
2001614 - 财政年份:2020
- 资助金额:
$ 19.9万 - 项目类别:
Standard Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1937869 - 财政年份:2019
- 资助金额:
$ 19.9万 - 项目类别:
Continuing Grant
Study of microlocal category and homological mirror symmetry
微局域范畴与同调镜像对称性研究
- 批准号:
18K13405 - 财政年份:2018
- 资助金额:
$ 19.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1702049 - 财政年份:2017
- 资助金额:
$ 19.9万 - 项目类别:
Continuing Grant
Homological mirror symmetry and tropical geometry
同调镜像对称和热带几何
- 批准号:
16H03930 - 财政年份:2016
- 资助金额:
$ 19.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Homological Mirror Symmetry Conference Miami 2015
2015 年迈阿密同调镜像对称会议
- 批准号:
1502578 - 财政年份:2015
- 资助金额:
$ 19.9万 - 项目类别:
Standard Grant














{{item.name}}会员




