Homological Mirror Symmetry Conference Miami 2015
2015 年迈阿密同调镜像对称会议
基本信息
- 批准号:1502578
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in a conference on Homological Mirror Symmetry held at the University of Miami from January 26 through January 31, 2015. Mirror symmetry originated in physics as a duality between superconformal quantum field theories. Maxim Kontsevich interpreted this duality in a consistent, powerful mathematical framework called Homological Mirror Symmetry (HMS). The ideas put forth by Kontsevich have led to dramatic developments in how the mathematical community approaches ideas from theoretical physics, and indeed our conception of space itself. Several cutting edge developments have happened in the last year.The conference on Homological Mirror Symmetry at the University of Miami will serve as a perfect opportunity for a dissemination of these developments and encouragement of a wave of young, early career researchers in this subject area. The wide range of topics appearing in HMS research necessitates venues for the open exchanges of ideas in order for graduate students and early-career researchers to stay informed on current topics. The subject has developed extremely rapidly in recent years, and this conference will have an immense broader impact by bringing young people into it. More details on the conference can be found at https://math.berkeley.edu/~auroux/miami2015.html.
该奖项支持参加2015年1月26日至1月31日在迈阿密大学举行的同质镜像对称性会议。镜像对称性起源于物理学,是超共形量子场论之间的对偶性。马克西姆·康采维奇在一个一致的、强大的数学框架中解释了这种二元性,称为同源镜像对称性(HMS)。康采维奇提出的想法导致了数学界如何从理论物理中获得想法的戏剧性发展,甚至是我们对空间本身的概念。去年发生了几个前沿发展。迈阿密大学的同源镜像对称性会议将是传播这些发展和鼓励一批年轻的、早期职业研究人员在这一领域的完美机会。HMS研究中出现的广泛主题需要有公开交流思想的场所,以便研究生和职业生涯早期研究人员了解当前主题。近年来,这一学科发展非常迅速,这次会议将通过吸引年轻人加入其中,产生巨大的更广泛的影响。有关这次会议的更多细节,请访问https://math.berkeley.edu/~auroux/miami2015.html.。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ludmil Katzarkov其他文献
Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves THANKSREF="*" ID="*" DA was partially supported by NSF grant DMS-0244844. LK was partially supported by NSF grant DMS-0600800 and NSA grant H98230-04-1-0038. DO was partially supported by the Weyl Fund, the Civilian Research Development Foundation (CRDF grant No. RUM1-2661-MO-05), the Russian Foundation for Basic Research (No. 05-01-01034), and the Russian Science Support Foundation.
- DOI:
10.1007/s00222-006-0003-4 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux;Ludmil Katzarkov;Dmitri Orlov - 通讯作者:
Dmitri Orlov
Discriminants and toric emK/em-theory
判别式与环面 emK/em 理论
- DOI:
10.1016/j.aim.2024.109831 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:1.500
- 作者:
R. Paul Horja;Ludmil Katzarkov - 通讯作者:
Ludmil Katzarkov
Strictification and gluing of Lagrangian distributions on derived schemes with shifted symplectic forms
关于具有移位辛形式的导出概型上拉格朗日分布的严格化和胶合
- DOI:
10.1016/j.aim.2023.109477 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:1.500
- 作者:
Dennis Borisov;Ludmil Katzarkov;Artan Sheshmani;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Modularity of Landau–Ginzburg Models
- DOI:
10.1134/s008154382501002x - 发表时间:
2025-05-29 - 期刊:
- 影响因子:0.400
- 作者:
Charles Doran;Andrew Harder;Ludmil Katzarkov;Mikhail Ovcharenko;Victor Przyjalkowski - 通讯作者:
Victor Przyjalkowski
Shifted symplectic structures on derived Quot-stacks II – derived emQuot/em-schemes as dg manifolds
导出商栈上的移位辛结构 II——作为 dg 流形的导出 emQuot/em 概型
- DOI:
10.1016/j.aim.2024.110092 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:1.500
- 作者:
Dennis Borisov;Ludmil Katzarkov;Artan Sheshmani - 通讯作者:
Artan Sheshmani
Ludmil Katzarkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ludmil Katzarkov', 18)}}的其他基金
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Categorical Kahler Geometry and Applications
分类卡勒几何及其应用
- 批准号:
2001319 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Homological Mirror Symmetry and Categorical Linear Systems
同调镜像对称和分类线性系统
- 批准号:
1502162 - 财政年份:2015
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Homological Mirror Symmetry MIAMI, Jan 27- Feb 1, 2014
同调镜像对称迈阿密,2014 年 1 月 27 日至 2 月 1 日
- 批准号:
1404779 - 财政年份:2014
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Homological Mirror Symmetry Conference Miami
迈阿密同调镜像对称会议
- 批准号:
1303069 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1265230 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Spectra, gaps, degenerations and cycles
光谱、间隙、简并和循环
- 批准号:
1201475 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute on Wall Crossing, Stability Hodge Structures and TQFT- Natal, Brazil
泛美跨墙、稳定性 Hodge 结构和 TQFT 高级研究所 - 巴西纳塔尔
- 批准号:
1242272 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Geometry and Physics Miami - Brazil - Mexico - Conference
几何与物理迈阿密 - 巴西 - 墨西哥 - 会议
- 批准号:
1201544 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Fellowship Award
Brauer group and homological mirror symmetry
布劳尔群和同调镜像对称
- 批准号:
23KJ0341 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
DERIVED CATEGORY METHODS IN ARITHMETIC: AN APPROACH TO SZPIRO'S CONJECTURE VIA HOMOLOGICAL MIRROR SYMMETRY AND BRIDGELAND STABILITY CONDITIONS
算术中的派生范畴方法:通过同调镜像对称性和布里奇兰稳定性条件推导SZPIRO猜想
- 批准号:
EP/V047299/1 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1937869 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Study of microlocal category and homological mirror symmetry
微局域范畴与同调镜像对称性研究
- 批准号:
18K13405 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1702049 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Homological mirror symmetry and tropical geometry
同调镜像对称和热带几何
- 批准号:
16H03930 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Homological Mirror Symmetry for Homogeneous Spaces
齐次空间的同调镜像对称
- 批准号:
1509141 - 财政年份:2015
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant














{{item.name}}会员




