Low-Complexity High-Bandwidth Multiport Matching Networks for Coupled Loads

适用于耦合负载的低复杂度高带宽多端口匹配网络

基本信息

  • 批准号:
    1509188
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Wireless devices that transmit and receive signals usually have antenna elements as part of their design. These antenna elements need to be "matched" to the radio-frequency amplifiers they are connected to, much in the way audio speakers need to be matched to amplifiers to optimize the sound of a music system. Matching circuits can be complicated when there are many antennas in a compact device since these antennas interact and couple with each other. Because of this coupling, any connection with one antenna disturbs the connections with neighboring antennas. Hence, the problem of connecting amplifiers to antennas when they are closely spaced requires careful consideration and a systematic circuit design process. Existing designs tend to be complicated, non-systematic, and difficult to implement in a compact manner; as a result, much transmitter power is lost to a poor match. This research effort looks at simple systematic circuit designs that achieve a good match across a wide range of transmitter frequencies. Since wireless devices are being asked to operate in many bands simultaneously and with high data rates, such circuits can yield great improvements in wireless connectivity in existing frequency bands as well as next-generation bands where the demands on the number of antennas, data rates and device performance are expected to be even more extreme. The theory and experimental validation developed under this effort for low-complexity, high-bandwidth networks is expected to have significant impact on the performance of low-cost high-performance devices, with benefit to society at large, including applications in personal communications and medical telemetry. The effort also has significant educational benefits since it will train an interdisciplinary mix of graduate students in topics within communications, circuits, and microwave engineering. This research effort advocates the design and analysis of low-complexity high-bandwidth multiport matching networks to compensate for coupling in radio-frequency transmitters, receivers, and circuits. The ideal multiport matching network inserted between independent sources and coupled loads compensates for the coupling by eliminating both reflected power and also power transferred from one source through a load to another source. Among the design limitations of such networks, complexity and bandwidth are usually the most important, especially for compact wideband wireless communication devices. These limitations have not been well studied, and this effort includes an integrated two-pronged exploration of these issues in microwave and millimeter-wave matching networks. The first prong uses network-theoretic analyses to explore systematic, unified, design methods that work for any load structure. The effort also seeks standardized limits against which network performance in both complexity and bandwidth can be measured. The second prong couples an experimental program to both validate as well as inform the modeling choices made in the design and optimization of the matching networks. Practical issues such as undesired parasitic coupling and electromagnetic discontinuities in distributed circuit implementations will be examined. Of particular interest are the microwave (2.4 GHz) and millimeter-wave (60 GHz) frequencies with both lumped and distributed radio-frequency components, and an emphasis on simple module layouts. The effort is transformative because it will offer a comprehensive unified set of metrics, design criteria, and methodologies for complexity and bandwidth of multiport matching networks applicable to compact radio-frequency devices.
发送和接收信号的无线设备通常将天线元件作为其设计的一部分。这些天线元件需要与它们所连接的射频放大器“匹配”,就像音频扬声器需要与放大器匹配以优化音乐系统的声音一样。当紧凑型设备中有许多天线时,匹配电路可能很复杂,因为这些天线相互作用和耦合。由于这种耦合,任何与一个天线的连接都会干扰与相邻天线的连接。因此,当放大器与天线之间的距离很近时,放大器与天线之间的连接问题需要仔细考虑和系统的电路设计过程。现有的设计往往是复杂的、非系统的,并且很难以紧凑的方式实施;因此,由于匹配不佳,发射机的功率会损失很大。这项研究工作着眼于在广泛的发射机频率范围内实现良好匹配的简单系统电路设计。由于无线设备被要求同时在多个频段中以高数据速率运行,因此这种电路可以在现有频段以及对天线数量、数据速率和设备性能的要求甚至更极端的下一代频段中产生无线连接的极大改进。在这一努力下开发的低复杂性、高带宽网络的理论和实验验证预计将对低成本高性能设备的性能产生重大影响,并对整个社会产生好处,包括在个人通信和医疗遥测方面的应用。这一努力还具有显著的教育效益,因为它将培养通信、电路和微波工程领域的研究生的跨学科组合。这项研究工作提倡设计和分析低复杂度、高带宽的多端口匹配网络,以补偿射频发射器、接收器和电路中的耦合。在独立源和耦合负载之间插入的理想多端口匹配网络通过消除反射功率和从一个源通过负载传输到另一个源的功率来补偿耦合。在这类网络的设计限制中,复杂性和带宽通常是最重要的,特别是对于紧凑型宽带无线通信设备。这些限制还没有得到很好的研究,这项工作包括对微波和毫米波匹配网络中这些问题的综合双管齐下的探索。第一个方面使用网络理论分析来探索适用于任何负载结构的系统、统一的设计方法。这项努力还寻求标准化的限制,可以根据这些限制来衡量网络在复杂性和带宽方面的性能。第二个分支耦合了一个实验程序,以验证匹配网络的设计和优化中所做的建模选择,并为其提供信息。我们将研究分布式电路实现中的实际问题,如不需要的寄生耦合和电磁不连续。特别令人感兴趣的是具有集中和分布式射频分量的微波(2.4 GHz)和毫米波(60 GHz)频率,并强调简单的模块布局。这一努力具有变革性,因为它将为适用于紧凑型射频设备的多端口匹配网络的复杂性和带宽提供一套全面统一的指标、设计标准和方法。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Broadband Matching Bound
Bandwidth Analysis of Multiport Radio-Frequency Systems—Part II
多端口射频系统的带宽分析 – 第二部分
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bertrand Hochwald其他文献

Bertrand Hochwald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bertrand Hochwald', 18)}}的其他基金

MLWiNS: Quality Versus Quantity in Spectrum Sensing with Distributed Sensors
MLWiNS:分布式传感器频谱传感的质量与数量
  • 批准号:
    2002921
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
REU Site: AWaRE Advanced Wireless Research Experiences at the University of Notre Dame
REU 网站:圣母大学 AWaRE 高级无线研究经验
  • 批准号:
    1757804
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SpecEES: Wideband Wireless Communications with Low-Power Transceiver-Cell Circuits
SpecEES:采用低功耗收发器电路的宽带无线通信
  • 批准号:
    1731056
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF: Medium: Modeling, Analysis, and Code Design for Portable Wireless Device Transmitters Subject to an Electromagnetic Exposure Constraint
CIF:中:受电磁暴露约束的便携式无线设备发射器的建模、分析和代码设计
  • 批准号:
    1403458
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: Multiple Transmitter Chains to Minimize Exposure to Electromagnetic Radiation in Portable Devices
EAGER:多个发射器链可最大限度地减少便携式设备中的电磁辐射暴露
  • 批准号:
    1141868
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/Y00390X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
  • 批准号:
    23K23857
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了