Collaborative Research: Arrays, Analog RF 2-D Filters, and Nanostructured Multiferroic Antennas for MM-wave OAM-Multiplexed Wireless Systems
合作研究:用于毫米波 OAM 复用无线系统的阵列、模拟 RF 2-D 滤波器和纳米结构多铁性天线
基本信息
- 批准号:1509754
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless radio frequency (RF) communication has relied on encoding information in the amplitudes and phases of waves that have patterns analogous to the concentric circular ripples produced by dropping a stone into a pond. Radio waves that are said to carry non-zero Orbital Angular Momentum (OAM) are more like the swirling vortices that develop as water drains from a sink. The OAM property of these vortex waves provides an additional dimension for transmitting information. This research will investigate antenna array analog filtering methods that can extract the OAM information from a received signal despite the presence of electromagnetic interference and noise. Mathematical filter design techniques, founded on topology and multi-dimensional signal processing, will be realized using complementary metal oxide semiconductor (CMOS) based recursive filters, which will enable high-frequency, continuous-time data extraction. Circuit theory will be created for use in designing RF vortex wave array processors that have multi-GHz bandwidth for challenging realizations in the microwave and millimeter-wave range. This work provides a new technique for exploiting an unused design dimension. Apart from providing communications engineers with a new means of physically realizing OAM-multiplexing, the results of this effort might offer paradigm-changing solutions for improving imaging and encryption technologies. Such technologies could impact medical, telecommunications, and defense industries as well as radio astronomy and atmospheric science. This knowledge will be distributed through outreach activitie at conferences and meetings. The project includes a female PI and will involve participation from underrepresented groups. There will be summer STEM workshops for high-school girls at both the University of Akron and the University of Texas at Dallas. Lab open houses will educate the public of the possible merits of this project for future wireless systems.Vortex modes are orthogonal to each other despite occupying the same carrier frequency and bandwidth, allowing independent encoding of information. OAM-multiplexing allows encoding with overlapped radio bandwidth. The project explores array-processing schemes for electronically tuning onto desired vortex modes using array processing and analog RF integrated circuits (ICs). Filter design techniques founded on curvilinear multi-dimensional signal processing are proposed for vortex-wave array processing using recursive filters, leading to high frequency continuous-time RF CMOS realizations. Circuit theory will be created for use in designing RF vortex wave array processors that have multi-GHz bandwidth for challenging realizations in the microwave and millimeter-wave range. Design methodologies and techniques for analog realizations will result from theoretical analysis, circuit synthesis, simulation and modeling of the vortex signal processors. To circumvent the problem of scattering of incoming signals, the project explores novel subwavelength antennas that minimize radio wave reflections by virtue of their smallness and the fact that the characteristic impedance of the antenna material will be engineered so as to achieve impedance matching with free space. This work will take advantage of the cross-coupled electric, magnetic and acoustic properties of magnetoelectric multiferroic materials (to be realized using polymer nanocomposites) to drastically enhance the performance of electrically small antennas. Conversion between electromagnetic and acoustic energy is advantageous because a signal of a particular frequency will have a much shorter acoustic wavelength than that of a radio wave.
无线射频(RF)通信依赖于对波的幅度和相位中的信息进行编码,这些波具有类似于将石头扔进池塘所产生的同心圆形涟漪的图案。据说携带非零轨道角动量(OAM)的无线电波更像是水槽中的水排出时形成的漩涡。这些涡旋波的OAM特性为传输信息提供了额外的维度。这项研究将研究天线阵列模拟滤波方法,该方法可以在存在电磁干扰和噪声的情况下从接收信号中提取OAM信息。建立在拓扑学和多维信号处理基础上的数学滤波器设计技术将使用基于互补金属氧化物半导体(CMOS)的递归滤波器来实现,这将使高频、连续时间数据提取成为可能。电路理论将被用于设计具有多GHz带宽的射频涡旋波阵处理器,以满足在微波和毫米波范围内具有挑战性的实现。这项工作为开发未使用的设计维度提供了一种新的技术。除了为通信工程师提供一种物理实现OAM多路复用的新方法外,这一努力的结果可能会为改进成像和加密技术提供改变范式的解决方案。这些技术可能会影响医疗、电信和国防行业,以及射电天文学和大气科学。这些知识将通过在各种会议上开展的外联活动传播。该项目包括一名女性PI,并将有代表人数不足的群体参与。阿克伦大学和达拉斯的德克萨斯大学都将为高中女生举办夏季STEM研讨会。实验室开放参观将教育公众该项目对未来无线系统可能的好处。涡旋模式相互垂直,尽管占据相同的载波频率和带宽,允许信息独立编码。OAM-多路复用允许使用重叠的无线电带宽进行编码。该项目探索使用阵列处理和模拟射频集成电路(IC)以电子方式调谐到所需涡旋模式的阵列处理方案。提出了一种基于曲线多维信号处理的递归滤波器用于涡旋波阵列处理的滤波器设计方法,从而实现了高频连续时间射频cmos。电路理论将被用于设计具有多GHz带宽的射频涡旋波阵处理器,以满足在微波和毫米波范围内具有挑战性的实现。模拟实现的设计方法和技术将来自涡旋信号处理器的理论分析、电路综合、仿真和建模。为了绕过输入信号的散射问题,该项目探索了新型亚波长天线,由于其体积小,以及天线材料的特性阻抗将被设计以实现与自由空间的阻抗匹配,从而将无线电波反射降至最低。这项工作将利用磁电多铁材料(将使用聚合物纳米复合材料实现)的交叉耦合的电、磁和声学特性来显著提高电小天线的性能。电磁和声能之间的转换是有利的,因为特定频率的信号具有比无线电波短得多的声波波长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Toonen其他文献
Ryan Toonen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328946 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313083 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Polymer SWIR Photodiodes for Focal Plane Arrays
合作研究:FuSe:用于焦平面阵列的聚合物短波红外光电二极管
- 批准号:
2328869 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328945 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Polymer SWIR Photodiodes for Focal Plane Arrays
合作研究:FuSe:用于焦平面阵列的聚合物短波红外光电二极管
- 批准号:
2328868 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: Distributed Predictive Control of Cold Atmospheric Microplasma Jet Arrays for Materials Processing
合作研究:用于材料加工的冷大气微等离子体射流阵列的分布式预测控制
- 批准号:
2302219 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2141008 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2140549 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant