EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays

EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化

基本信息

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) will support research to improve engineered tissues. Engineered tissues have become important platforms for the development of therapeutics for many diseases and disorders. They hold particular promise for improving wound healing. Cells sense and respond their environment. How they sense their environment effects how they form tissues. How a cell's local environment affects it's behavior during wound healing is still not well understood. There have been substantial strides that have been made in the use of engineered tissues for disease modeling and drug development. However, simultaneously monitoring cellular behavior and tissue properties remains a challenge, and limits further advances. This project will create autonomous tissue culture monitoring platforms that enable real-time monitoring of multi-scale cellular behavior and tissue properties. If successful, scalable and high-throughput methods for autonomous monitoring of engineered tissues will be realized. This could have profound and broad socioeconomic benefits in terms of public health and drug discovery. The project will engage students through research experiences for undergraduates in data acquisition for autonomous life sciences research. The goal of this project is to advance the ability to simultaneously quantify the dynamic multi-scale attributes of engineered tissues in real time. The central approach is to establish the feasibility of a novel autonomous sensor-based experimental platform for dynamically quantifying bulk extracellular matrix (ECM) mechanical properties, multi-cellular anatomical structures, cell phenotypes, and gene and protein expression during wound healing processes using sensor-integrated 3D cell culture models. The work involves the following research objectives: 1) to utilize a cantilever sensor-integrated well plate format for autonomous monitoring of a fibroblast-Schwann cell 3D co-culture model treated with exogenous transforming growth factor (TGF-β) to invoke a wound healing response, and 2) to compare real-time changes in bulk ECM mechanical properties with temporal changes in gene and protein expression levels in 3D co-culture models. This work will yield the first quantitative description of the dynamic relationship between real-time ECM mechanical changes and cell behaviors in tissues undergoing wound healing. The project also provides research experiences for undergraduate students in data acquisition for autonomous tissue characterization and bioprocess monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一探索性研究的早期概念拨款(AGER)将支持改进工程组织的研究。工程组织已经成为许多疾病和障碍治疗发展的重要平台。它们在改善伤口愈合方面有着特别的前景。细胞感知并对环境做出反应。它们感知环境的方式会影响它们形成组织的方式。在伤口愈合过程中,细胞的局部环境如何影响其行为仍不是很清楚。在利用工程组织进行疾病建模和药物开发方面已经取得了很大进展。然而,同时监测细胞行为和组织属性仍然是一个挑战,并限制了进一步的进展。该项目将创建自主组织培养监测平台,实现对多尺度细胞行为和组织属性的实时监测。如果成功,将实现可扩展和高通量的工程组织自主监测方法。这可能会在公共卫生和药物发现方面产生深远而广泛的社会经济效益。该项目将通过本科生的研究经验吸引学生参与自主生命科学研究的数据获取。该项目的目标是提高同时实时量化工程组织的动态多尺度属性的能力。中心方法是建立一个新的基于传感器的自主实验平台的可行性,使用集成传感器的3D细胞培养模型动态定量伤口愈合过程中大量细胞外基质(ECM)的机械性能、多细胞解剖结构、细胞表型以及基因和蛋白质表达。这项工作涉及以下研究目标:1)利用悬臂式传感器集成孔板格式自主监测外源转化生长因子(转化生长因子)处理的成纤维细胞-雪旺细胞3D共培养模型,以激发伤口愈合反应;2)比较三维共培养模型中成纤维细胞-雪旺细胞三维共培养模型中细胞外基质力学性能的实时变化与基因和蛋白质表达水平的时间变化。这项工作将首次定量描述创伤愈合过程中组织中实时ECM机械变化和细胞行为之间的动态关系。该项目还为本科生提供了自主组织表征和生物过程监测的数据获取方面的研究经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blake Johnson其他文献

“I Am Who I Am Because of Here!”
“我就是因为这里才成为我的!”
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Levine Brown;M. Kanny;Blake Johnson
  • 通讯作者:
    Blake Johnson
Effect of Pass/Fail Grading vs Letter Grading on Pharmacy Students’ Achievement Goal Orientations
  • DOI:
    10.1016/j.ajpe.2023.100296
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juliette Miller;Beth B. Phillips;Russ Palmer;Michael J. Fulford;Blake Johnson;Devin Lavender;Rebecca Stone
  • 通讯作者:
    Rebecca Stone
Effectiveness of team-focused CPR on in-hospital CPR quality and outcomes
以团队为中心的心肺复苏对院内心肺复苏质量和结果的有效性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    David A. Pearson;Nicole Bensen Covell;Benjamin Covell;Blake Johnson;Cate Lounsbury;Mike Przybysz;Anthony Weekes;Michael Runyon
  • 通讯作者:
    Michael Runyon
Monetary stability and the rule of law
  • DOI:
    10.1016/j.jfs.2014.09.002
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Koyama;Blake Johnson
  • 通讯作者:
    Blake Johnson
Screening, brief intervention, and referral to treatment among homeless and marginally housed primary-care patients in Skid Row
  • DOI:
    10.1186/1940-0640-7-s1-a58
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Lillian Gelberg;Ronald M Andersen;Lisa Arangua;Mani Vahidi;Blake Johnson;Vashti Becerra;Colleen Duro;Steve Shoptaw
  • 通讯作者:
    Steve Shoptaw

Blake Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blake Johnson', 18)}}的其他基金

CAREER: Transforming Biosensor Reliability using Sensor Time-series Data and Physics-based Machine Learning
职业:使用传感器时间序列数据和基于物理的机器学习改变生物传感器的可靠性
  • 批准号:
    2144310
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: ISS: Real-time Sensing of Extracellular Matrix Remodeling during Fibroblast Phenotype Switching and Vascular Network Formation in Wound Healing
合作研究:ISS:实时感知成纤维细胞表型转换和伤口愈合中血管网络形成过程中的细胞外基质重塑
  • 批准号:
    2126176
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER: Non-invasive Sensing of Superficial Organ Tissue via Conforming Multi-parametric Microfluidic Organ Biosensors (MMOBs): Shifting the Paradigm for Organ Assessment
EAGER:通过多参数微流控器官生物传感器 (MMOB) 对浅表器官组织进行非侵入式传感:改变器官评估的范式
  • 批准号:
    1650601
  • 财政年份:
    2016
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了