UNS: Collaborative Research: 30%-Efficient III-V/Silicon Tandem Solar Cells
UNS:%20协作%20研究:%2030%-高效%20III-V/硅%20串联%20太阳能%20电池
基本信息
- 批准号:1509864
- 负责人:
- 金额:$ 14.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Minjoo Larry Lee / Zachary C. HolmanProposal Number: 1509687/ 1509864The sun represents the most abundant potential source of sustainable energy on earth. Currently, solar cells based on crystalline silicon materials dominate the photovoltaics market for production of electricity from the sun because they offer the highest solar energy conversion efficiency at the lowest manufacturing cost. However, to accelerate the penetration of solar energy in the renewable electricity market, the solar energy conversion efficiency of silicon-based solar cells must ultimately increase beyond its practical limit of 24%. The goal of this project is develop a silicon-based solar cell which contains Group III and V elements from the Periodic Table, arranged in layers which have the potential to increase the solar energy conversion efficiency to 30%. The fundamental science underlying the performance of this the III-V/silicon tandem cell will be used to develop the best strategy for eventual manufacture. As part of the educational activities of this project, the principal investigators will be actively involved in an outreach program that seeks to broaden the participation of under-represented groups in engineering by using solar research as a platform for involvement in both technical and career-development sessions at Veterans meetings and the Society of Hispanic Professional Engineers conference.Photovoltaic devices that contain multiple p-n junctions are currently the only route to achieve solar energy conversion efficiencies that exceed the Shockley-Queisser single p-n junction limit that caps the theoretical performance of crystalline silicon solar cells currently in commercial use. The overall goal of this proposed research is to develop a fundamental understanding of two-terminal tandem solar cell performance through controlled growth of Group III-V elements on silicon. The fabrication strategy is guided by fundamental studies and is designed to optimize the material and device architecture to achieve 30% solar energy conversion efficiency, which is beyond the 24% practical limit of single-junction crystalline silicon solar cells. Towards this end, the model Group III-V material selected for study is GaAsP, since it has a direct and tunable bandgap, and can be grown on a transparent, compositionally graded buffer on a GaP/Si template. The bottom cell of the tandem device will be based on an amorphous silicon/crystalline silicon heterojunction solar cell, where the front amorphous silicon layers will be replaced with the GaP template layer upon which the top cell is grown. The research plan has three objectives. The first objective is to understand and control the formation of threading dislocations in the GaAsP absorber, and to develop optimized window and back-surface field layers for the top cell that will both increase transmission into the GaAsP absorber and reduce surface recombination. The second objective is to understand and improve the passivation of GaP on silicon and the transport of electrons across the conduction band offset. The third objective is to maximize the conversion of infrared light into current in the bottom cell by designing single-side light-trapping textures and dielectric/metal rear reflectors, and then tune the thicknesses, doping densities, and bandgaps of the III-V supporting layers to both form a recombination junction between the sub-cells and match their currents. The research outcomes will advance fundamental scientific understanding of multi-junction solar cell performance while developing fabrication strategies that will enable for scalable industrial manufacture of devices potentially capable of delivering 30% solar energy conversion efficiency. The principal investigators will also use the research outcomes to enhance instructional materials in photovoltaics course offerings at Yale University and Arizona State University.
PI:Minjoo Larry Lee/Zachary C.Holman建议编号:1509687/1509864太阳代表着地球上最丰富的潜在可持续能源。目前,基于晶体硅材料的太阳能电池在太阳能发电的光伏市场上占据主导地位,因为它们以最低的制造成本提供了最高的太阳能转换效率。然而,要加快太阳能在可再生电力市场的渗透,硅基太阳能电池的太阳能转换效率最终必须提高到超过其实际限制的24%。该项目的目标是开发一种硅基太阳能电池,它含有元素周期表中的III和V族元素,按层排列,有可能将太阳能转换效率提高到30%。这一性能的基础科学III-V/硅串联电池将用于开发最终制造的最佳策略。作为该项目教育活动的一部分,主要调查人员将积极参与一项外联计划,该计划旨在通过将太阳能研究作为参与退伍军人会议和西班牙裔专业工程师协会会议的技术和职业发展会议的平台,扩大未被充分代表的群体在工程领域的参与。包含多个p-n结的光伏器件目前是实现超过Shockley-Queisser单p-n结限制的太阳能转换效率的唯一途径,该限制限制了目前商业使用的晶体硅太阳能电池的理论性能。这项拟议研究的总体目标是通过在硅上控制生长III-V族元素来对两端串联太阳能电池的性能有一个基本的了解。该制造策略以基础研究为指导,旨在优化材料和器件架构,以实现30%的太阳能转换效率,这超出了单结晶体硅太阳能电池24%的实用限制。为此,选择用于研究的模型III-V族材料是GaAsP,因为它具有直接和可调的带隙,并且可以在GaP/Si模板上生长在透明的、成分梯度的缓冲层上。串联器件的底部电池将基于非晶硅/晶体硅异质结太阳能电池,其中前面的非晶硅层将被生长顶部电池的GaP模板层所取代。该研究计划有三个目标。第一个目标是了解和控制GaAsP吸收体线状位错的形成,并为顶部电池开发优化的窗口和背面场层,这将增加对GaAsP吸收体的透射率,并减少表面复合。第二个目标是了解和改进硅上GaP的钝化和电子在导带偏移量上的传输。第三个目标是通过设计单面捕光纹理和介质/金属后反射器,最大限度地将红外光转换为底部单元中的电流,然后调整III-V支撑层的厚度、掺杂密度和带隙,以在子单元之间形成复合结并匹配它们的电流。研究成果将促进对多结太阳能电池性能的基础科学理解,同时开发制造策略,使能够提供30%太阳能转换效率的设备的可扩展工业制造成为可能。主要研究人员还将利用研究成果来改进耶鲁大学和亚利桑那州立大学提供的光伏课程的教学材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Holman其他文献
Analysis of electrically conductive adhesives in shingled solar modules by X-ray imaging techniques
- DOI:
10.1016/j.microrel.2022.114627 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Barry Hartweg;Kathryn Fisher;Sridhar Niverty;Nikhilesh Chawla;Zachary Holman - 通讯作者:
Zachary Holman
In-flightプラズマCVDによるシリコンナノ粒子合成と太陽電池への応用
飞行等离子体 CVD 合成硅纳米颗粒及其在太阳能电池中的应用
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
野崎智洋;Ryan Gresback;Zachary Holman;鐘ヶ江俊輔;岡崎健 - 通讯作者:
岡崎健
Qualification of laser-weld interconnection of aluminum foil to back-contact silicon solar cells
铝箔与背接触硅太阳能电池激光焊接互连的鉴定
- DOI:
10.1016/j.solmat.2023.112647 - 发表时间:
2024 - 期刊:
- 影响因子:6.9
- 作者:
Barry Hartweg;Kathryn Fisher;Jason Ro;Zachary Holman - 通讯作者:
Zachary Holman
Zachary Holman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Holman', 18)}}的其他基金
CAREER: Transparent, passivating, and carrier-selective heterojunction contacts for silicon and cadmium telluride solar cells
职业:用于硅和碲化镉太阳能电池的透明、钝化和载流子选择性异质结接触
- 批准号:
1846685 - 财政年份:2019
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
EAGER:TDM Solar Cells: Collaborative Research: 30%-Efficient, Stable Perovskite/Silicon Monolithic Tandem Solar Cells
EAGER:TDM%20Solar%20%20%20Cells:%20Collaborative%20研究:%20%20%2030%-高效、%20Stable%20钙钛矿/硅%20Monolithic%20Tandem%20Solar%20Cells
- 批准号:
1664710 - 财政年份:2017
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
REU Site: Solar Energy Research for the Terawatt Challenge
REU 网站:应对太瓦挑战的太阳能研究
- 批准号:
1560031 - 财政年份:2016
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
EAPSI: Novel solar cells using silicon nanocrystals synthesized in an atmospheric pressure plasma
EAPSI:使用在大气压等离子体中合成的硅纳米晶体的新型太阳能电池
- 批准号:
1014982 - 财政年份:2010
- 资助金额:
$ 14.09万 - 项目类别:
Fellowship Award
相似海外基金
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2129627 - 财政年份:2021
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028541 - 财政年份:2020
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028371 - 财政年份:2020
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
- 批准号:
1852379 - 财政年份:2018
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1705346 - 财政年份:2017
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1704326 - 财政年份:2017
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Testing the paradigms of the colloidal glass: Novel concentration jump experiments and large scale computer modeling
UNS:协作研究:测试胶体玻璃的范例:新颖的浓度跳跃实验和大规模计算机建模
- 批准号:
1801717 - 财政年份:2017
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Characterizing pyrogenic soil organic matter as a source of nitrogenous disinfection byproducts
UNS:合作研究:表征热解土壤有机物作为含氮消毒副产物的来源
- 批准号:
1512705 - 财政年份:2016
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: 30%-Efficient III-V/Silicon Tandem Solar Cells
UNS:%20%20协作%20研究:%2030%-高效%20III-V/硅%20串联%20太阳能%20电池
- 批准号:
1736181 - 财政年份:2016
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Measurement and Modeling of the Pathways of Potential Fugitive Methane Emissions During Hydrofracking
UNS:合作研究:水力压裂过程中潜在逃逸甲烷排放路径的测量和建模
- 批准号:
1717142 - 财政年份:2016
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant