Collaborative Research: Instantons, Monopoles, and Relations among their Invariants
合作研究:瞬时子、磁单极子及其不变量之间的关系
基本信息
- 批准号:1510064
- 负责人:
- 金额:$ 19.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Manifolds are shapes which locally resemble Euclidean space but may have complicated global structure. Four-dimensional manifolds (with three spatial and one temporal direction) are used in General Relativity as models for the Universe. Manifolds of other dimensions, such as two or six, are used by theoretical physicists in String Theory models which may lead to a unification of Quantum Field Theory and Gravity. Because the solution sets of many equations arising in theoretical physics and applied mathematics are manifolds, the ability to distinguish between manifolds is useful throughout the mathematical sciences, as well as in Topology, Geometry, and Theoretical Physics. The work undertaken in this project will lead to a rare mathematical proof of a prediction from supersymmetric quantum field theory. The discovery in 2012 at CERN of the Higgs boson confirms the Standard Model, but supersymmetry has not yet been detected by the Large Hadron Collider experiments. However, the Principal Investigators' research shows that at least some consequences of supersymmetry can be mathematically verified. The activities in this project should also lead to greater involvement of minorities, especially African-American and Hispanic students, and women in mathematics research, given the Principal Investigators' record and continuing desire to encourage women and minorities to pursue careers in mathematics and to provide mentorship and training. To communicate this work to a wider audience, the Principal Investigators will write a research monograph based on this project, and organize conferences at Rutgers University and Florida International University and special sessions at national American Mathematical Society meetings each year from 2015 through 2018. In 1994, using supersymmetric quantum field theory, Edward Witten derived his celebrated formula relating Donaldson and Seiberg-Witten invariants of a closed, oriented, smooth four-dimensional manifold with admissible topology and simple type. The first goal of this project is to complete the proof of Witten's formula, employing a mathematically rigorous method based on moduli spaces of non-Abelian monopoles; the Principal Investigators have completed all steps of this program except their work on the gluing theorem for non-Abelian monopoles. They will also use non-Abelian monopoles to define new invariants of four-dimensional manifolds, investigate higher- rank Donaldson invariants, and derive relations between the instanton and Seiberg-Witten Floer homologies of closed three-dimensional manifolds.
流形是局部类似于欧几里得空间但可能具有复杂全局结构的形状。四维流形(具有三个空间方向和一个时间方向)在广义相对论中被用作宇宙的模型。其他维度的流形,如二维或六维,被理论物理学家用于弦理论模型,这可能导致量子场论和引力的统一。由于理论物理和应用数学中出现的许多方程的解集都是流形,因此区分流形的能力在整个数学科学以及拓扑、几何和理论物理中都很有用。在这个项目中进行的工作将导致超对称量子场论预测的罕见数学证明。2012年欧洲核子研究中心对希格斯玻色子的发现证实了标准模型,但大型强子对撞机实验尚未发现超对称。然而,首席研究人员的研究表明,至少超对称的一些结果可以在数学上得到验证。鉴于首席研究人员的记录和鼓励妇女和少数民族从事数学事业并提供指导和培训的持续愿望,本项目中的活动还应导致少数民族,特别是非洲裔和西班牙裔学生,以及妇女更多地参与数学研究。为了将这项工作传达给更广泛的受众,主要研究者将根据该项目撰写研究专著,并从2015年到2018年每年在罗格斯大学和佛罗里达国际大学组织会议,并在美国数学学会会议上组织特别会议。1994年,Edward Witten利用超对称量子场论,导出了具有可容许拓扑和简单型的封闭、定向、光滑四维流形的Donaldson和Seiberg-Witten不变量的著名公式。本项目的第一个目标是完成Witten公式的证明,采用基于非阿贝尔单极子模空间的数学严格方法;主要研究人员已经完成了这个项目的所有步骤,除了他们对非阿贝尔单极子胶合定理的研究。他们还将使用非阿贝耳单极子定义四维流形的新不变量,研究高阶Donaldson不变量,并推导封闭三维流形的瞬子和Seiberg-Witten Floer同调之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Feehan其他文献
Paul Feehan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Feehan', 18)}}的其他基金
Rutgers Geometric Analysis Conference 2022
罗格斯大学几何分析会议 2022
- 批准号:
2154782 - 财政年份:2022
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Frontiers in Geometry Conference 2022
2022 年几何前沿会议
- 批准号:
2154823 - 财政年份:2022
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
- 批准号:
2104865 - 财政年份:2021
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Mathematical Finance, Probability, and Partial Differential Equations Conference
数学金融、概率和偏微分方程会议
- 批准号:
1713013 - 财政年份:2017
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Geometric Analysis Conferences and Seminars
几何分析会议和研讨会
- 批准号:
1611717 - 财政年份:2016
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
AMC-SS: Mathematical Finance and Partial Differential Equations Conference - November 2, 2012
AMC-SS:数学金融和偏微分方程会议 - 2012 年 11 月 2 日
- 批准号:
1237722 - 财政年份:2012
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Conference on Mathematical Finance and Partial Differential Equations
数学金融与偏微分方程会议
- 批准号:
1059206 - 财政年份:2011
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Gauge Theory and the Topology of Smooth Four-Manifolds
规范理论与光滑四流形拓扑
- 批准号:
0196361 - 财政年份:2001
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Gauge theory and low-dimensional topology
规范理论和低维拓扑
- 批准号:
0125170 - 财政年份:2001
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Training Grant














{{item.name}}会员




