Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
基本信息
- 批准号:2104865
- 负责人:
- 金额:$ 28.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Manifolds are shapes that locally resemble Euclidean space. This project focuses on manifolds that are closed in the sense that they have no boundary edges and do not extend to infinity. A closed one-dimensional manifold is equivalent to the circle, while a closed (orientable) two-dimensional manifold is equivalent to the sphere, the surface of a donut, or the surface of a “donut” with two or more holes. Closed three-dimensional manifolds cannot be so easily visualized, while closed four-dimensional manifolds can have very complicated structures and are not well-understood. Four-dimensional manifolds, with three spatial directions and one temporal direction, are used in general relativity as models for the universe. Four-dimensional manifolds also play a central role in gauge theories developed to unify three of the four known fundamental forces (the electromagnetic, weak, and strong interactions). The first goal of the project is to complete a mathematical proof of a prediction from supersymmetric quantum field theory, one that relates two different gauge theories used to help understand four-dimensional manifolds. The second goal of the project is to advance understanding of the possible structures of four-dimensional manifolds, a source of fascination and inspiration for mathematicians and physicists for nearly a century. The classification of possible structures of three-dimensional manifolds advanced tremendously in recent decades, but four-dimensional manifolds remain mysterious, despite intense effort by mathematicians to analyze them. The third goal of the project is to develop methods to relate different approaches to understanding the structure of three-dimensional manifolds. The project involves graduate students in the research. To help train the next generation of mathematicians, the principals also will continue their tradition of organizing seminars and conferences, contributing expository articles to help engage a broader audience interested in learning about careers and research in mathematics, mentoring undergraduate and graduate students and postdoctoral researchers, and encouraging the interest of high-school students in mathematics through summer programs and outreach activities at the National Museum of Mathematics.The first goal of the project is to complete a proof of Witten's formula relating the Donaldson and Seiberg-Witten invariants of a closed, oriented, smooth four-dimensional manifold with admissible topology and simple type, employing a mathematically rigorous method based on moduli spaces of non-Abelian monopoles. The work will apply a new approach to gluing solutions to non-linear partial differential equations that arise in geometric analysis to establish a proof of an expected gluing theorem for non-Abelian monopoles. The second goal of their project is complete a proof of the conjectured Bogomolov-Miyaoka-Yau inequality for simply connected four-dimensional manifolds of Seiberg-Witten simple type and having non-zero Seiberg-Witten invariants. The approach uses a new version of Morse theory for singular analytic spaces applied to the singular moduli space of non-Abelian monopoles to prove existence of solutions to another non-linear partial differential equation – the anti-self-dual Yang-Mills equation on a rank-two Hermitian vector bundle with prescribed topology over a four-dimensional manifold. The third goal of the project is to derive relations between the instanton and Seiberg-Witten Floer homologies of closed three-dimensional manifolds, potentially relating fundamental groups and contact structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流形是局部类似于欧几里得空间的形状。这个项目的重点是流形是封闭的,在这个意义上,他们没有边界的边缘,并没有延伸到无穷大。一个封闭的一维流形等价于圆,而一个封闭的(可定向的)二维流形等价于球面、甜甜圈的表面或有两个或更多个孔的“甜甜圈”的表面。封闭的三维流形不能如此容易地可视化,而封闭的四维流形可能具有非常复杂的结构,并且不容易理解。四维流形,有三个空间方向和一个时间方向,在广义相对论中被用作宇宙的模型。四维流形在规范理论中也扮演着核心角色,规范理论的发展是为了统一四种已知基本力中的三种(电磁力、弱相互作用和强相互作用)。该项目的第一个目标是完成超对称量子场论预测的数学证明,该理论将两种不同的规范理论联系起来,用于帮助理解四维流形。该项目的第二个目标是促进对四维流形可能结构的理解,这是近世纪来数学家和物理学家的魅力和灵感来源。近几十年来,三维流形的可能结构的分类取得了巨大的进步,但四维流形仍然神秘,尽管数学家们付出了巨大的努力来分析它们。该项目的第三个目标是开发方法,将不同的方法联系起来,以理解三维流形的结构。该项目涉及研究生的研究。为了帮助培养下一代数学家,校长们还将继续他们组织研讨会和会议的传统,贡献临时文章,以帮助吸引更广泛的观众有兴趣了解数学的职业和研究,指导本科生和研究生以及博士后研究人员,并鼓励高-通过国家数学博物馆的暑期项目和推广活动,为学生提供数学方面的知识。该项目的第一个目标是完成了维滕公式的证明,该公式涉及具有容许拓扑和简单类型的封闭、定向、光滑四维流形的唐纳森和塞伯格-维滕不变量,采用基于非阿贝尔单极模空间的数学严格方法。这项工作将采用一种新的方法来胶合解决方案的非线性偏微分方程中出现的几何分析,以建立一个预期的胶合定理的证明非阿贝尔单极。他们项目的第二个目标是完成一个证明的Bogomolov-Miyaoka-Yau不等式的简单连接四维流形的Seiberg-Witten简单型和非零Seiberg-Witten不变量。该方法将奇异解析空间的莫尔斯理论应用于非Abel单极的奇异模空间,证明了四维流形上具有指定拓扑的二秩Hermitian向量丛上的反自对偶Yang-Mills方程解的存在性.该项目的第三个目标是推导出封闭三维流形的瞬子和Seiberg-Witten Floer同调之间的关系,潜在地将基本群和接触结构联系起来。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Feehan其他文献
Paul Feehan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Feehan', 18)}}的其他基金
Rutgers Geometric Analysis Conference 2022
罗格斯大学几何分析会议 2022
- 批准号:
2154782 - 财政年份:2022
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Frontiers in Geometry Conference 2022
2022 年几何前沿会议
- 批准号:
2154823 - 财政年份:2022
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Mathematical Finance, Probability, and Partial Differential Equations Conference
数学金融、概率和偏微分方程会议
- 批准号:
1713013 - 财政年份:2017
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Geometric Analysis Conferences and Seminars
几何分析会议和研讨会
- 批准号:
1611717 - 财政年份:2016
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: Instantons, Monopoles, and Relations among their Invariants
合作研究:瞬时子、磁单极子及其不变量之间的关系
- 批准号:
1510064 - 财政年份:2015
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
AMC-SS: Mathematical Finance and Partial Differential Equations Conference - November 2, 2012
AMC-SS:数学金融和偏微分方程会议 - 2012 年 11 月 2 日
- 批准号:
1237722 - 财政年份:2012
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Conference on Mathematical Finance and Partial Differential Equations
数学金融与偏微分方程会议
- 批准号:
1059206 - 财政年份:2011
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Gauge Theory and the Topology of Smooth Four-Manifolds
规范理论与光滑四流形拓扑
- 批准号:
0196361 - 财政年份:2001
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Gauge theory and low-dimensional topology
规范理论和低维拓扑
- 批准号:
0125170 - 财政年份:2001
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350374 - 财政年份:2024
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350373 - 财政年份:2024
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
- 批准号:
2409888 - 财政年份:2023
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
- 批准号:
2212130 - 财政年份:2022
- 资助金额:
$ 28.33万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223871 - 财政年份:2022
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2211916 - 财政年份:2022
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133822 - 财政年份:2022
- 资助金额:
$ 28.33万 - 项目类别:
Standard Grant