Optimal Shrinkage Estimation for Heteroscedastic Data

异方差数据的最优收缩估计

基本信息

  • 批准号:
    1510446
  • 负责人:
  • 金额:
    $ 30.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Shrinkage estimators are powerful statistical methods that have profound impact in scientific and engineering applications. They provide efficient tools to pool information from related populations for simultaneous inference -- the data on each population alone often do not lead to the most effective estimation, but by pooling information from the related populations together one can often obtain more accurate estimates for each individual population. Examples of the applications of shrinkage estimators include the analysis of healthcare systems (quality of hospital services, etc.), the analysis of education programs (the effectiveness of teaching programs), the assessment of medical treatments (pooling information from multiple studies or clinical trials), the ranking of multiple genes on their association with diseases, and the comparison of multiple manufacturing processes. This research project will investigate shrinkage estimations in the context of heterogeneous data, aiming to identify optimal ways to conduct shrinkage estimation in various settings.This research project studies and identifies risk-optimal shrinkage estimators under parametric as well as semi-parametric settings for heteroscedastic data. In addition to thorough theoretical investigation, the project includes comprehensive numerical studies and real applications. The research topics include the investigation of optimal shrinkage estimators for heteroscedastic data from non-Gaussian exponential families; the investigation of optimal shrinkage estimators for heteroscedastic data from location-scale families; and the investigation of optimal shrinkage estimators for heteroscedastic data from linear regression models. The research aims to advance the theoretical understanding of shrinkage estimators and also provide powerful techniques for the analysis of data in medical, natural and social sciences, and engineering.
收缩估计量是一种在科学和工程应用中具有深远影响的强有力的统计方法。它们提供了有效的工具,可以从相关人群中汇集信息,进行同步推断----单独使用每个人群的数据往往不能得出最有效的估计,但通过将相关人群的信息汇集在一起,往往可以获得每个人群的更准确估计。收缩估计器的应用实例包括医疗保健系统的分析(医院服务质量等),教育计划的分析(教学计划的有效性),医学治疗的评估(汇集来自多项研究或临床试验的信息),多个基因与疾病相关性的排名,以及多个制造过程的比较。本研究将探讨异质数据背景下的收缩估计,旨在确定在各种设置下进行收缩估计的最佳方法。本研究项目研究并确定异方差数据在参数和半参数设置下的风险最优收缩估计。除了深入的理论研究外,该项目还包括全面的数值研究和真实的应用。研究主题包括非高斯指数族异方差数据的最优收缩估计的研究;位置尺度族异方差数据的最优收缩估计的研究;以及线性回归模型异方差数据的最优收缩估计的研究。该研究旨在推进对收缩估计的理论理解,并为医学,自然和社会科学以及工程中的数据分析提供强大的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Kou其他文献

Samuel Kou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Kou', 18)}}的其他基金

Order Determination for Hidden Markov and Related Models
隐马尔可夫及相关模型的阶数确定
  • 批准号:
    1810914
  • 财政年份:
    2018
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Modeling and Inference in Biophysics
职业:生物物理学中的随机建模和推理
  • 批准号:
    0449204
  • 财政年份:
    2005
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Continuing Grant

相似海外基金

Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
  • 批准号:
    573853-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Joint modeling of longitudinal and survival data: A shrinkage estimation approach
纵向数据和生存数据的联合建模:收缩估计方法
  • 批准号:
    539087-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 30.41万
  • 项目类别:
    University Undergraduate Student Research Awards
New development of shrinkage estimation methods in statistical inference
统计推断中收缩率估计方法的新进展
  • 批准号:
    18K11188
  • 财政年份:
    2018
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Shrinkage estimation of semiparametric marginal models for binary longitudinal data
二元纵向数据半参数边际模型的收缩估计
  • 批准号:
    524940-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 30.41万
  • 项目类别:
    University Undergraduate Student Research Awards
On model selection criteria under shrinkage estimation in greedy learning
贪心学习中收缩估计下的模型选择标准
  • 批准号:
    18K11433
  • 财政年份:
    2018
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the applicability of shrinkage estimation methods and related procedures
收缩率估算方法及相关程序的适用性研究
  • 批准号:
    18K01546
  • 财政年份:
    2018
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Joint modeling of longitudinal measurements and time-to-event data: A shrinkage estimation approach
纵向测量和事件时间数据的联合建模:收缩估计方法
  • 批准号:
    524941-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 30.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Shrinkage, Pretest, and Penalty Estimation Methods and Their Applications
收缩、预测试和惩罚估计方法及其应用
  • 批准号:
    419428-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Discovery Grants Program - Individual
Shrinkage for Vector Autoregressions and Impulse Response Estimation
矢量自回归和脉冲响应估计的收缩
  • 批准号:
    1656123
  • 财政年份:
    2017
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Continuing Grant
Shrinkage, Pretest, and Penalty Estimation Methods and Their Applications
收缩、预测试和惩罚估计方法及其应用
  • 批准号:
    419428-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了