UNS: Dynamics of Microbial Agents in Sewer Systems and Wet Weather Flow
UNS:下水道系统和潮湿天气流量中微生物制剂的动态
基本信息
- 批准号:1510461
- 负责人:
- 金额:$ 33.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1510461FahrenfeldSince wastewater treatment systems are designed to inactivate infectious agents, the Center for Disease Control (CDC) allows urine and fecal matter from patients with infectious diseases to enter sanitary sewers. However, sewer overflows during wet weather flow are a widespread issue in the US. Sewer solids are a major contributor to pollution during urban wet weather flows. Therefore, sewers are not merely a conduit for wastewater, but rather, complex bioreactors: microorganisms can decay, grow, and have their transport attenuated during conveyance. Surprisingly little is known about the biological processes which occur the sewer deposits and their effect on the fate of microbial agents (i.e., pathogens and antibiotic resistant bacteria) and that is the objective of this proposed project. To perform Quantitative Microbial Risk Assessment for overflow events, optimize sewer maintenance plans, and design wet weather flow treatment, it is necessary to understand the processes affecting the survival of microbial agents (here defined as pathogens and antibiotic resistant bacteria) in sewer solids and biofilms. This is especially true in the case of sewer overflows, but is also important in order to use sewer samples for tracking the incidence of human disease. Sewer surveillance is a useful tool for epidemiology that would benefit from improved understanding of the fate of microbial agents during conveyance in sewer systems. A field survey will be performed to determine the biochemical factors driving the microbial quality of sewer deposits and the relative loading of microbial agents in wastewater and sewer deposits. Next, a controlled simulated sewer experiment will be performed to determine the fate of microbial agents in sewer deposits to provide kinetic data in sewer sediments and biofilm. Finally, a combined sewer overflow (CSO) event will be sampled to characterize the flux of the microbial agents during wet weather flow events. This field study will use the microbial signatures of sewer sediments developed to differentiate between the flux of microbial agents from sewer solids and wastewater. High-throughput, viability-based molecular assays will be applied in this study and allow for sensitive detection of pathogens and the determination of the dynamics of the viable and non-viable antibiotic resistance gene loads. This understanding is essential for determining the risk posed by antibiotic resistant genes in sewer sediments upon release in the environment. Overall, the proposed project will provide critical insight into the fate of microbial agents in sewers and during wet weather flow. The research approach extends biomolecular analytical methods for understanding the fate of microbial agents in sewer deposits. The quantitative data gathered on the environmental factors driving the proliferation of pathogen and antibiotic resistance in sewers will inform quantitative microbial risk assessment, improve models of wet weather pollution events, and aid in the development of mitigation strategies. Of particular interest is the potential application of the knowledge gained here on in-sewer biological processes for improved implementation of sewer surveillance for tracking infectious disease. Sewer epidemiological methods are currently limited by our lack of understanding of critical environmental factors and biochemical processes driving the fate of microbial agents in sewers. Therefore, this work has the potential to transform not only our ability to protect public health during wet weather flow, but also our ability to perform public health surveillance in the sewer matrix. The project targets: (1) recruiting and retaining undergraduate women students in engineering; and, (2) improving scientific literacy. Educational materials and learning modules will be developed and presented biannually in STEM outreach to Girl Scouts (grades 6-12) and at Rutgers Day. A project website will be created to improve public scientific literacy and broaden public knowledge of CSO issues.
1510461污水处理由于污水处理系统的设计是为了消除传染性病原体,疾病控制中心(CDC)允许传染病患者的尿液和粪便进入卫生下水道。然而,下水道在潮湿的天气流动溢出是一个普遍的问题,在美国。下水道固体是城市潮湿天气流动期间污染的主要贡献者。因此,下水道不仅仅是废水的管道,而且是复杂的生物反应器:微生物可以在输送过程中腐烂、生长并减弱其传输。令人惊讶的是,人们对下水道沉积物中发生的生物过程及其对微生物病原体命运的影响(即,病原体和抗生素耐药性细菌),这就是本拟议项目的目标。为了对溢流事件进行定量微生物风险评估,优化下水道维护计划,并设计潮湿天气流量处理,有必要了解影响下水道固体和生物膜中微生物制剂(此处定义为病原体和抗生素抗性细菌)存活的过程。这在下水道溢出的情况下尤其如此,但对于使用下水道样本跟踪人类疾病的发病率也很重要。下水道监测是流行病学的一个有用的工具,将受益于更好地了解微生物病原体的命运在下水道系统的运输。将进行实地调查,以确定驱动下水道沉积物的微生物质量的生化因素以及废水和下水道沉积物中微生物制剂的相对负荷。接下来,将进行受控模拟下水道实验,以确定下水道沉积物中微生物制剂的命运,以提供下水道沉积物和生物膜中的动力学数据。最后,一个合并的下水道溢流(CSO)事件将被采样,以表征在潮湿天气流动事件的微生物剂的通量。这项实地研究将使用下水道沉积物的微生物特征,以区分来自下水道固体和废水的微生物制剂的通量。本研究将采用高通量、基于活力的分子测定法,可灵敏地检测病原体,并测定活的和非活的抗生素耐药基因载量的动态。这种理解对于确定下水道沉积物中抗生素耐药基因在环境中释放后所造成的风险至关重要。总的来说,拟议的项目将提供关键的洞察下水道和潮湿天气流动期间的微生物制剂的命运。该研究方法扩展了生物分子分析方法,以了解下水道沉积物中微生物的命运。收集到的关于驱动下水道中病原体和抗生素耐药性扩散的环境因素的定量数据将为定量微生物风险评估提供信息,改进潮湿天气污染事件的模型,并有助于制定缓解策略。特别令人感兴趣的是,在这里获得的知识的潜在应用在下水道的生物过程,以改善执行下水道监测跟踪传染病。下水道流行病学方法目前受到限制,我们缺乏对关键环境因素和生物化学过程的理解,这些因素和生物化学过程决定了下水道中微生物的命运。因此,这项工作不仅有可能改变我们在潮湿天气流动期间保护公共卫生的能力,而且有可能改变我们在下水道矩阵中进行公共卫生监测的能力。该项目的目标是:(1)招收和留住工科女大学生;(2)提高科学素养。将编制教育材料和学习模块,并每半年在面向女童子军(6-12年级)的STEM外联活动中和罗格斯日介绍一次。将建立一个项目网站,以提高公众的科学素养,扩大公众对民间社会组织问题的了解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICOLE FAHRENFELD其他文献
NICOLE FAHRENFELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICOLE FAHRENFELD', 18)}}的其他基金
CAREER: Controls on the host and transfer of hazardous genes
职业:控制宿主和有害基因的转移
- 批准号:
1846815 - 财政年份:2019
- 资助金额:
$ 33.24万 - 项目类别:
Continuing Grant
Collaborative Research: Terrestrial microplastic pollution: understudied sources, source tracking, and citizen science
合作研究:陆地微塑料污染:未充分研究的来源、来源追踪和公民科学
- 批准号:
1917676 - 财政年份:2019
- 资助金额:
$ 33.24万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
- 批准号:
2305735 - 财政年份:2024
- 资助金额:
$ 33.24万 - 项目类别:
Fellowship Award
Elucidation of the theory underlying microbial community dynamics in spontaneous sourdough fermentation
阐明自发酵母发酵中微生物群落动态的理论
- 批准号:
23K13873 - 财政年份:2023
- 资助金额:
$ 33.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Quantifying the impact of oxylipin chemical signaling on microbial community dynamics and biogeochemical cycling
合作研究:量化氧脂素化学信号对微生物群落动态和生物地球化学循环的影响
- 批准号:
2231921 - 财政年份:2023
- 资助金额:
$ 33.24万 - 项目类别:
Continuing Grant
Understanding the transmission dynamics of norovirus with microbial data in wastewater and machine learning algorithms
利用废水中的微生物数据和机器学习算法了解诺如病毒的传播动力学
- 批准号:
22KJ2358 - 财政年份:2023
- 资助金额:
$ 33.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding microbial community dynamics in food waste anaerobic digestion
了解食物垃圾厌氧消化中的微生物群落动态
- 批准号:
2889052 - 财政年份:2023
- 资助金额:
$ 33.24万 - 项目类别:
Studentship
Collaborative Research: Quantifying the impact of oxylipin chemical signaling on microbial community dynamics and biogeochemical cycling
合作研究:量化氧脂素化学信号对微生物群落动态和生物地球化学循环的影响
- 批准号:
2231922 - 财政年份:2023
- 资助金额:
$ 33.24万 - 项目类别:
Continuing Grant
Microbial carbon cycling in marine environments: linking micro-scale processes to global carbon dynamics
海洋环境中的微生物碳循环:将微观过程与全球碳动态联系起来
- 批准号:
RGPIN-2019-04228 - 财政年份:2022
- 资助金额:
$ 33.24万 - 项目类别:
Discovery Grants Program - Individual
The architecture and dynamics of microbial interaction networks in food model ecosystems
食物模型生态系统中微生物相互作用网络的结构和动态
- 批准号:
RGPIN-2017-04771 - 财政年份:2022
- 资助金额:
$ 33.24万 - 项目类别:
Discovery Grants Program - Individual
NSF Postdoctoral Fellowship in Biology FY 2021: Integrating microbial dynamics into methane models for northern peatland and post-glacial lakes
2021 财年 NSF 生物学博士后奖学金:将微生物动力学整合到北部泥炭地和冰河后湖泊的甲烷模型中
- 批准号:
2109429 - 财政年份:2022
- 资助金额:
$ 33.24万 - 项目类别:
Fellowship Award
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
- 批准号:
10490833 - 财政年份:2022
- 资助金额:
$ 33.24万 - 项目类别:














{{item.name}}会员




