UNS: Exploring the feasibility of plasmonic nanocrystal solar cells utilizing strongly confined radiation.

UNS:探索利用强约束辐射的等离子体纳米晶体太阳能电池的可行性。

基本信息

  • 批准号:
    1510503
  • 负责人:
  • 金额:
    $ 34.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

PI Name: Mikhail ZamkovProposal number: 1510503The sun represents the most abundant potential source of sustainable energy on earth. Solar cells convert sunlight to electricity through the use of photovoltaic (PV) materials, which are expensive. One method to reduce the cost of making PV materials is to cast suspensions of nano-sized semiconductor crystals called quantum dots into a continuous thin sheet, a process called solution processing. However, thin-film PV materials made by this method have a poor trade off with respect to the thickness needed to provide good solar energy absorption versus good electrical conduction through the film. To address this issue, the goal of this project is to introduce another type of nano-sized metal particle into the solution processing scheme that will improve the power conversion performance of the thin film. This specially designed metal particle, called a plasmonic particle, exploits a quantum mechanical principle called confined radiation to improve the light absorption of the film, leading to potential improvements in the power conversion efficiency. The educational activities associated with the project will involve undergraduates in research through the Building Ohio's Sustainable Energy Future (BOSEF) program.The solution-based fabrication of colloidal semiconductor nanocrystals (quantum dots) into thin-film photovoltaic (PV) devices offers a route for low-cost manufacture. Unfortunately, the electrical conductivity in solution-cast semiconductor PV thin films is poor, requiring exceptionally thin films that cannot fully absorb the incident light. The overall goal of the proposed research is to fabricate and study the performance of photovoltaic cells which rely on the near-field antenna emission of metal nanoparticles to funnel solar energy into the absorber layer. Theoretically, this type of plasmon radiation can enhance the optical density of photovoltaic devices beyond the conventional far-field scattering employed by most plasmonic or photonically-enhanced crystal cells. If successful, this enhanced absorption layer can fully absorb light at film thicknesses needed to maintain low conduction losses, leading to enhanced photovoltaic performance. To enable the photovoltaic conversion of near-field emission into electric power, plasmonic films will be assembled by doping the semiconductor nanocrystal solids with electrically-insulated metal nanoparticles where the far-field emission is suppressed. In this way, the near-field emission will be harvested by coupling the plasmon radiation directly to resonant transitions of semiconductor nanocrystals. Photoconductivity and time-resolved spectroscopy will be used to measure near-field energy conversion into electrical power. The thermal impact of heat-prone metal nanoparticles will be alleviated by using a matrix-encapsulation approach, where colloidal nanocrystals are imbedded into all-inorganic matrices that have tunable interparticle distances. The proposed research will be conducted in collaboration with the Wright Center for Photovoltaics Innovation and Commercialization (PVIC), where students will be trained the industry-grade equipment and build scientific relationships with industry partners.
PI 姓名:Mikhail Zamkov 提案编号:1510503 太阳代表着地球上最丰富的潜在可持续能源。 太阳能电池通过使用昂贵的光伏(PV)材料将阳光转化为电能。 降低光伏材料制造成本的一种方法是将纳米级半导体晶体(称为量子点)的悬浮液浇铸成连续的薄片,这一过程称为溶液加工。 然而,通过这种方法制造的薄膜光伏材料在提供良好的太阳能吸收所需的厚度与通过薄膜的良好导电性方面的权衡较差。 为了解决这个问题,该项目的目标是将另一种纳米金属颗粒引入溶液处理方案中,以提高薄膜的功率转换性能。这种特殊设计的金属粒子(称为等离子体粒子)利用称为受限辐射的量子力学原理来改善薄膜的光吸收,从而潜在地提高功率转换效率。 与该项目相关的教育活动将让本科生参与“建设俄亥俄州可持续能源未来”(BOSEF) 计划的研究。基于解决方案将胶体半导体纳米晶体(量子点)制造成薄膜光伏(PV)设备,为低成本制造提供了一条途径。 不幸的是,溶液浇铸半导体PV薄膜的导电性很差,需要不能完全吸收入射光的特殊薄膜。 该研究的总体目标是制造光伏电池并研究其性能,该电池依靠金属纳米颗粒的近场天线发射将太阳能引入吸收层。从理论上讲,这种类型的等离子体辐射可以增强光伏器件的光密度,超过大多数等离子体或光子增强晶体电池所采用的传统远场散射。 如果成功,这种增强的吸收层可以在保持低传导损耗所需的薄膜厚度下完全吸收光,从而增强光伏性能。 为了实现近场发射的光伏转换为电能,将通过在半导体纳米晶体固体中掺杂电绝缘的金属纳米颗粒来组装等离子体薄膜,从而抑制远场发射。 这样,通过将等离激元辐射直接耦合到半导体纳米晶体的共振跃迁来收获近场发射。 光电导和时间分辨光谱将用于测量近场能量转化为电能。通过使用基质封装方法,可以减轻易热金属纳米颗粒的热影响,其中胶体纳米晶体被嵌入到具有可调颗粒间距离的全无机基质中。 拟议的研究将与莱特光伏创新和商业化中心(PVIC)合作进行,学生将在那里接受行业级设备的培训,并与行业合作伙伴建立科学关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Zamkov其他文献

Influence of QD photosensitizers in the photocatalytic production of hydrogen with biomimetic [FeFe]-hydrogenase. Comparative performance of CdSe and CdTe
  • DOI:
    10.1016/j.chemosphere.2021.130485
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Corredor;Dulanjan Harankahage;Frederic Gloaguen;Maria J. Rivero;Mikhail Zamkov;Inmaculada Ortiz
  • 通讯作者:
    Inmaculada Ortiz

Mikhail Zamkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Zamkov', 18)}}的其他基金

Solution-processed laser diodes utilizing colloidal quantum wells
利用胶体量子阱进行溶液加工的激光二极管
  • 批准号:
    2208834
  • 财政年份:
    2022
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Standard Grant
Reaction Limited Synthesis of Atomically-Defined Semiconductor Nanocrystals
原子定义的半导体纳米晶体的反应有限合成
  • 批准号:
    1710063
  • 财政年份:
    2017
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Continuing Grant
Energy funneling in plasmonic nanocrystal composites for photocatalytic production of solar fuels
用于光催化生产太阳能燃料的等离子体纳米晶体复合材料中的能量漏斗
  • 批准号:
    1465052
  • 财政年份:
    2015
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Standard Grant
Low-temperature assembly of all-inorganic solar cells from nanocrystal inks.
用纳米晶体墨水低温组装全无机太阳能电池。
  • 批准号:
    1236355
  • 财政年份:
    2012
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Standard Grant
Development of nanocomposite inorganic materials for photocatalytic production of solar fuels
开发用于光催化生产太阳能燃料的纳米复合无机材料
  • 批准号:
    1112227
  • 财政年份:
    2011
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

Exploring Changing Fertility Intentions in China
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Exploring the feasibility of pumped hydroelectric energy storage (PHES) using seawater in South Africa
探索南非利用海水抽水蓄能(PHES)的可行性
  • 批准号:
    10048467
  • 财政年份:
    2023
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Feasibility Studies
Exploring longitudinal and momentary effects of family functioning on obesity risk behaviors in Hispanic adolescents and family units
探索家庭功能对西班牙裔青少年和家庭单位肥胖风险行为的纵向和瞬时影响
  • 批准号:
    10724545
  • 财政年份:
    2023
  • 资助金额:
    $ 34.61万
  • 项目类别:
Exploring the feasibility of 'servitization of technology' taking into account internal carbon pricing.
探索考虑内部碳定价的“技术服务化”的可行性。
  • 批准号:
    22K01742
  • 财政年份:
    2022
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring the feasibility of data-driven cyber insurance in Brazil and wider Latin America
探索数据驱动的网络保险在巴西和更广泛的拉丁美洲的可行性
  • 批准号:
    10020302
  • 财政年份:
    2022
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Collaborative R&D
Exploring Mechanisms of Change in a Pilot Trial of the RUBI Program in Educational Settings
RUBI项目在教育环境中的试点探索变革机制
  • 批准号:
    10655518
  • 财政年份:
    2021
  • 资助金额:
    $ 34.61万
  • 项目类别:
Exploring the concept of dyadic health in Thai couples coping with breast cancer: A preliminary study of a partnered approach to physical activity in breast cancer survivors and spouse care partners
探索泰国夫妇应对乳腺癌的二元健康概念:乳腺癌幸存者和配偶护理伙伴合作体育活动方法的初步研究
  • 批准号:
    10426561
  • 财政年份:
    2021
  • 资助金额:
    $ 34.61万
  • 项目类别:
Exploring Mechanisms of Change in a Pilot Trial of the RUBI Program in Educational Settings
RUBI项目在教育环境中的试点探索变革机制
  • 批准号:
    10453684
  • 财政年份:
    2021
  • 资助金额:
    $ 34.61万
  • 项目类别:
Exploring Mechanisms of Change in a Pilot Trial of the RUBI Program in Educational Settings
RUBI项目在教育环境中的试点探索变革机制
  • 批准号:
    10285267
  • 财政年份:
    2021
  • 资助金额:
    $ 34.61万
  • 项目类别:
Exploring Potential Sex Differences In Neurobiological Mechanisms of Alcohol Sensitivity and Tolerance
探索酒精敏感性和耐受性的神经生物学机制中潜在的性别差异
  • 批准号:
    10113498
  • 财政年份:
    2020
  • 资助金额:
    $ 34.61万
  • 项目类别:
Exploring Potential Sex Differences In Neurobiological Mechanisms of Alcohol Sensitivity and Tolerance
探索酒精敏感性和耐受性的神经生物学机制中潜在的性别差异
  • 批准号:
    10604392
  • 财政年份:
    2020
  • 资助金额:
    $ 34.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了