UNS: Design of stable spontaneous Pickering emulsions by modulating nanoparticles interactions
UNS:通过调节纳米颗粒相互作用设计稳定的自发皮克林乳液
基本信息
- 批准号:1510671
- 负责人:
- 金额:$ 34.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
#1510671Frechette,JoellePickering emulsions are oil-water emulsions stabilized by solid particles. They are important in food science, consumer products, flotation, oil recovery, and catalysis. As with all emulsions, mechanical agitation is necessary to create droplets and to bring the particles to the drop surfaces, and over time coalescence breaks the emulsions. In standard oil-water emulsions, thermodynamic stability yields clear suspensions with droplets that are very small and uniformly sized. To date there is not an equivalent, well-understood, sub-class of Pickering emulsions that are thermodynamically stable and spontaneous (i.e., form without agitation). Spontaneous emulsification has only been reported for a limited set of unique materials. Based on this background, there is an important engineering rationale to design spontaneous Pickering emulsions: uniform sizes, smaller droplets, optically accessible clear solutions, long shelf-life, and no need for agitation. Our overarching objective is to develop the scientific understanding necessary to design thermodynamically spontaneous, stable, and reversible Pickering emulsions, with the engineering goal to enable numerous new technologies based on the their advantageous properties. The design guidelines obtained will apply to a range of problems, including those with anisotropic or patchy particles. This proposal aims to understand and manipulate nanoparticle-nanoparticle and nanoparticle-interface interactions to develop a unique means to create thermodynamically stable, spontaneous, and reversible Pickering emulsions. To achieve this goal, a better understanding of the thermodynamics of nanoparticle adsorption at fluid interfaces is needed, and the role played by particle-particle interactions as well as between a particle and the interface needs to be elucidated. As a first step, the experimental systems will be screened via the characterization of the adsorption of nanoparticles to the fluid interface (partitioning, reversibility, surface pressure, stability). A thermodynamic model for the formation of spontaneous, stable, reversible Pickering emulsions based on interaction potentials and material properties will be developed next. Finally, the model will be validated by measuring material dependent particle-particle (in bulk and interfacial phases) and particle-interface interaction potentials. The novelty of the proposed work lies in the systematic and iterative approach toward extensive adsorption characterization, rigorous modeling, and unique measurements of interparticle potentials, which will dovetail to provide: 1) conditions for reversible equilibrium, 2) material parameters to achieve spontaneous emulsification, 3) quantitative determination of nanoparticle interactions at fluid interfaces, and 4) conditions where reversibility cannot be achieved, either due to metastable configurations at the interface or slow adsorption kinetics.THe focus on thermodynamic reversibility opens the door to technologies relying external modulation of adsorption or emulsification, such as cleanup of oil spills, sensing and detection, or separation. The work will accelerate the development of technologies based on Pickering emulsions by increasing shelf-life and by the design of smaller and optically accessible droplets. Throughout the duration of the project the PIs will visit an afterschool program weekly and provide mentoring to students as they engage in STEM design projects, and will introduce a project on emulsions. Assessment of outcomes will be done via collaboration with the School of Education and outside consultants. The PIs will also recruit several high school students and undergraduate students for this project. The PIs will incorporate the results of this project into two core graduate courses.
#1510671Frechette,JoellePickering乳液是由固体颗粒稳定的油-水乳液。它们在食品科学、消费品、浮选、石油回收和催化中很重要。与所有乳液一样,需要机械搅拌以产生液滴并将颗粒带到液滴表面,并且随着时间的推移聚结破坏乳液。在标准油水乳液中,热力学稳定性产生透明悬浮液,液滴非常小且尺寸均匀。到目前为止,还没有一种等效的、充分理解的、药物稳定的和自发的Pickering乳液的子类(即,无需搅拌即可形成)。仅报告了一组有限的独特材料的自发乳化。基于这一背景,设计自发性Pickering乳剂有一个重要的工程原理:均匀的尺寸、较小的液滴、光学可及的澄清溶液、较长的保质期和无需搅拌。我们的总体目标是发展必要的科学理解,以设计自发的,稳定的和可逆的皮克林乳液,工程目标是使许多新技术的基础上,他们的优势特性。所获得的设计准则将适用于一系列问题,包括各向异性或斑块状颗粒的问题。该提案旨在理解和操纵纳米粒子-纳米粒子和纳米粒子-界面相互作用,以开发一种独特的方法来创建物理稳定的、自发的和可逆的Pickering乳液。为了实现这一目标,需要更好地理解纳米颗粒在流体界面吸附的热力学,并且需要阐明颗粒-颗粒相互作用以及颗粒与界面之间所起的作用。作为第一步,实验系统将通过表征纳米颗粒吸附到流体界面(分配,可逆性,表面压力,稳定性)进行筛选。基于相互作用势和材料性质的自发的,稳定的,可逆的皮克林乳液形成的热力学模型将被开发。最后,该模型将通过测量材料相关的粒子-粒子(在体相和界面相)和粒子-界面相互作用势进行验证。所提出的工作的新奇在于系统和迭代的方法,用于广泛的吸附表征,严格的建模和颗粒间电势的独特测量,这将提供:1)可逆平衡的条件,2)实现自发乳化的材料参数,3)在流体界面处纳米颗粒相互作用的定量测定,4)由于界面处的亚稳态构型或缓慢的吸附动力学,无法实现可逆性的条件。对热力学可逆性的关注为依赖于吸附或乳化的外部调节的技术打开了大门,例如溢油的清除、传感和检测或分离。这项工作将通过延长保质期和设计更小和光学可访问的液滴来加速基于皮克林乳液的技术的发展。在整个项目期间,PI将每周访问一次课外活动,并在学生参与STEM设计项目时为他们提供指导,并将介绍一个关于乳液的项目。评估结果将通过与教育学院和外部顾问合作进行。PI还将为该项目招募几名高中生和本科生。研究所将把该项目的成果纳入两门核心研究生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joelle Frechette其他文献
Criterion for particle rebound during wet collisions on elastic coatings
弹性涂层湿碰撞期间颗粒反弹的标准
- DOI:
10.1103/physrevfluids.4.084305 - 发表时间:
2019-08 - 期刊:
- 影响因子:2.7
- 作者:
Matthew Ryan Tan;Yumo Wang;Joelle Frechette - 通讯作者:
Joelle Frechette
Joelle Frechette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joelle Frechette', 18)}}的其他基金
NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
- 批准号:
2223407 - 财政年份:2022
- 资助金额:
$ 34.39万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Microgravity enabled studies of particle adsorption dynamics at fluid interfaces
合作研究:国际空间站:微重力支持流体界面颗粒吸附动力学的研究
- 批准号:
2224412 - 财政年份:2022
- 资助金额:
$ 34.39万 - 项目类别:
Standard Grant
Performance of Pressure Sensitive Adhesives on Soft and Slippery Materials
压敏粘合剂在软滑材料上的性能
- 批准号:
1728082 - 财政年份:2017
- 资助金额:
$ 34.39万 - 项目类别:
Standard Grant
Nanomanufacturing of Hierarchical Colloidal Nanomaterials Using Multi-scale Interactions
利用多尺度相互作用进行多级胶体纳米材料的纳米制造
- 批准号:
1562579 - 财政年份:2016
- 资助金额:
$ 34.39万 - 项目类别:
Standard Grant
Manipulation of Elastic Deformation in Bio-inspired Wet Adhesion
仿生湿粘附中弹性变形的操纵
- 批准号:
1538003 - 财政年份:2015
- 资助金额:
$ 34.39万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Effect of Transient Interfacial Dynamic in the Transport and Deposition of Particles in the Vadose Zone
合作研究:了解瞬态界面动力学对渗流区颗粒传输和沉积的影响
- 批准号:
1436482 - 财政年份:2014
- 资助金额:
$ 34.39万 - 项目类别:
Standard Grant
CAREER: Engineering Surface Interactions to Modulate a Confined Fluid
职业:工程表面相互作用来调节密闭流体
- 批准号:
0748094 - 财政年份:2008
- 资助金额:
$ 34.39万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 34.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
Continuing Grant
Design of Bulk Stable Nanocrystalline Alloys: A New Approach to Lightweighting
块体稳定纳米晶合金的设计:轻量化的新方法
- 批准号:
RGPIN-2022-02978 - 财政年份:2022
- 资助金额:
$ 34.39万 - 项目类别:
Discovery Grants Program - Individual
Design of Bulk Stable Nanocrystalline Alloys: A New Approach to Lightweighting
块体稳定纳米晶合金的设计:轻量化的新方法
- 批准号:
DGECR-2022-00046 - 财政年份:2022
- 资助金额:
$ 34.39万 - 项目类别:
Discovery Launch Supplement
Flaviviruses must come of age: design of stable, mature particles by structural vaccinology
黄病毒必须成熟:通过结构疫苗学设计稳定、成熟的颗粒
- 批准号:
nhmrc : 2004582 - 财政年份:2021
- 资助金额:
$ 34.39万 - 项目类别:
Ideas Grants
Air-stable and water-resistant n-type organic thermoelectric materials using rational design of molecular-cationic dopant
利用分子阳离子掺杂剂合理设计的空气稳定且耐水的n型有机热电材料
- 批准号:
21K14428 - 财政年份:2021
- 资助金额:
$ 34.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of design rules of stable, multi-gap perovskite photovoltaic devices
稳定、多间隙钙钛矿光伏器件设计规则的构建
- 批准号:
21K04809 - 财政年份:2021
- 资助金额:
$ 34.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)