UNS: Collaborative Research: Systematical Modeling and Control of Microbial Electrochemical Activities towards Efficient Electrical Energy Harvesting
UNS:合作研究:微生物电化学活动的系统建模和控制,以实现高效电能收集
基本信息
- 批准号:1510682
- 负责人:
- 金额:$ 16.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Park, Jae-Do / Ren, ZhiyongProposal Number: 1511568 / 1510682 A microbial fuel cell contains special strains of bacteria that consume organic matter in waste water to generate electricity and clean up the water. These systems have been touted as a promising route for sustainable and "energy positive" waste water treatment. However, microbial fuel cell systems have many obstacles to overcome before widespread use is possible. Two of the major problems are low power output and reliability. The goal of this project is to adapt the principles of process control theory to microbial fuel cell systems to address these two problems. The research plan will focus on developing a scientific understanding of the interactions of the bacteria with electrical power control systems, and from this understanding, develop models to control the power output of a microbial fuel cell, improving reliability. It is also hoped that tuning the process to peak power output using these models will enrich the device with the bacterial strains that produce the most electric current to further improve power output. As part of the educational activities of this project, undergraduate students will participate in the research through University of Colorado Undergraduate Research Opportunities Program. The project will also work with University of Colorado Tech Transfer Office to help energy companies who are interested in commercializing the research for specialized waste water treatment applications.Microbial fuel cells generate electricity though metabolism of dissolved organic matter. The typical microbial fuel cell is two-compartment electrochemical cell which contains a biofilm of electrochemically-active microorganisms in the anode compartment that metabolizes dissolved organic materials to generate electrochemical potential and transfer electrons to the anode surface, which is harvested as current. Protons (H+) generated by this process transfer across an ion-exchange membrane to the cathode compartment, where they are reduced to water by dissolved oxygen on the cathode surface. The electrochemically active microorganisms have the capacity to transport charge to the outer surface of the cell through specialized membrane structures. The overall goal of this proposed research is to develop a fundamental understanding of the interactions between microbial electrochemical activities and externally-controlled electrical energy harvesting systems designed for microbial fuel cells using process control and systems theory. The central hypothesis of the proposed research is that if microbial fuel cell operation can be put into a process control scheme and tuned to maximum power input, then this process will put a selection pressure on the microbial community growing within the anode biofilm to enrich the consortium for the most electrochemically active microorganisms and ultimately improve current generation and biofilm stability. Within this context, the research plan has three objectives. The first objective is to develop an energy systems model in terms of measurable and controllable variables to quantify the relationships between inputs and electrical output for a single microbial fuel cell. Based on this single cell model, the energy harvesting and control system model for a multi-cell device stack will be developed. The second objective to understand how the selective pressure created by the new pulse-type power extraction stimulates bioelectrochemical activities within the microbial community, including cell electron transfer metabolism shifts and dynamic microbial community evolution. The third objective is to utilize electrical engineering techniques such as resonant impedance matching, time- and frequency-domain analysis, and transfer functions to analyze and improve the system performance and controllability. If successful, the proposed research will culminate in scalable and flexible real-time control scheme to capture and maintain the maximum usable energy output from multiple microbial fuel cell devices under different conditions to help enable system reliability and scale-up. Research outcomes will also be integrated into several renewable energy and water treatment course offerings at the University of Colorado Boulder and Denver campuses.
主要研究者:Park,Jae-Do / Ren,Zhiyong提案编号:1511568 / 1510682微生物燃料电池含有特殊的细菌菌株,它们消耗废水中的有机物来发电和净化水。 这些系统被吹捧为可持续和“能源积极”废水处理的有前途的途径。 然而,微生物燃料电池系统在广泛应用之前还有许多障碍需要克服。 两个主要问题是低功率输出和可靠性。 本项目的目标是将过程控制理论的原理应用于微生物燃料电池系统,以解决这两个问题。 该研究计划将侧重于发展对细菌与电力控制系统相互作用的科学理解,并从这一理解出发,开发控制微生物燃料电池功率输出的模型,提高可靠性。 人们还希望,使用这些模型将过程调整到峰值功率输出,将使设备富含产生最大电流的细菌菌株,以进一步提高功率输出。 作为本项目教育活动的一部分,本科生将通过科罗拉多大学本科生研究机会计划参与研究。 该项目还将与科罗拉多大学技术转移办公室合作,帮助有兴趣将该研究商业化的能源公司进行专门的废水处理应用。微生物燃料电池通过溶解有机物的代谢产生电力。典型的微生物燃料电池是双室电化学电池,其在阳极室中含有电化学活性微生物的生物膜,其代谢溶解的有机材料以产生电化学电势并将电子转移到阳极表面,其作为电流被收集。 由该过程产生的质子(H+)穿过离子交换膜转移到阴极室,在阴极室中它们被阴极表面上的溶解氧还原成水。 电化学活性微生物具有通过专门的膜结构将电荷运输到细胞外表面的能力。 这项研究的总体目标是开发一个基本的理解之间的相互作用的微生物电化学活动和外部控制的电能收集系统设计的微生物燃料电池使用过程控制和系统理论。 所提出的研究的中心假设是,如果微生物燃料电池操作可以被放入过程控制方案中并被调整到最大功率输入,则该过程将对阳极生物膜内生长的微生物群落施加选择压力,以富集最具电化学活性的微生物的聚生体,并最终提高电流生成和生物膜稳定性。 在这方面,研究计划有三个目标。 第一个目标是开发一个能源系统模型的可测量和可控的变量,以量化的输入和电输出之间的关系,为一个单一的微生物燃料电池。 基于该单电池模型,将开发用于多电池设备堆的能量收集和控制系统模型。 第二个目的是了解新的脉冲式功率提取产生的选择性压力如何刺激微生物群落内的生物电化学活动,包括细胞电子转移代谢转移和动态微生物群落进化。 第三个目标是利用电气工程技术,如谐振阻抗匹配,时域和频域分析,和传递函数来分析和改善系统的性能和可控性。 如果成功,拟议的研究将最终实现可扩展和灵活的实时控制方案,以捕获和保持多个微生物燃料电池设备在不同条件下的最大可用能量输出,以帮助实现系统可靠性和规模扩大。 研究成果还将被整合到科罗拉多大学博尔德分校和丹佛分校的几个可再生能源和水处理课程中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiyong Ren其他文献
Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize
- DOI:
10.1016/j.cj.2021.07.008 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:
- 作者:
Xiao Zhang;Zhiyong Ren;Bowen Luo;Haixu Zhong;Peng Ma;Hongkai Zhang;Hongmei Hu;Yikai Wang;Haiying Zhang;Dan Liu;Ling Wu;Zhi Nie;Yonghui Zhu;Wenzhu He;Suzhi Zhang;Shunzong Su;Yaou Shen;Shibin Gao - 通讯作者:
Shibin Gao
Grain refinement and mechanical response of U-5.5 wt%Nb alloy produced by cold rolling and heat treatment
- DOI:
10.1016/j.jnucmat.2017.07.012 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Zhiyong Ren;Rong Ma;Guichao Hu;Jun Wu;Zhenhong Wang;Chao Luo - 通讯作者:
Chao Luo
CircRNA-miRNA-mRNA networks in plasma extracellular vesicles as biomarkers for first-onset schizophrenia
- DOI:
10.1186/s12888-025-07073-y - 发表时间:
2025-07-09 - 期刊:
- 影响因子:3.600
- 作者:
Xinzhe Du;Wei Hu;Xinrong Li;Yao Gao;Junxia Li;Xiaodong Hu;Xiao Wang;Wentao Zhao;Long Cheng;Xiaohua Cao;Hongbao Cao;Zhiyong Ren;Yu Zhang;Yong Xu;Sha Liu - 通讯作者:
Sha Liu
Inhibiteurs du stat3 et leurs utilisations
stat3 抑制剂及用途
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
John McMurray;P. K. Mandal;Warren S L Liao;Zhiyong Ren;Xiaoming Chen;Ramesh Rajaopal;Fredika M. Robertson - 通讯作者:
Fredika M. Robertson
Further elucidation of GMPPB as a risk gene for depression through integrative multi-omics analyses
通过综合多组学分析进一步阐明 GMPPB 作为抑郁症风险基因
- DOI:
10.1016/j.jad.2025.05.013 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:4.900
- 作者:
Yanhong Du;Yao Gao;Xinzhe Du;Ting An;Hong Zhang;Binhong Wang;Hongbao Cao;Wei Li;Zhiyong Ren;Sha Liu - 通讯作者:
Sha Liu
Zhiyong Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiyong Ren', 18)}}的其他基金
PFI-TT: Concentrating and Separating Lithium from Brine Sources
PFI-TT:从盐水源中浓缩和分离锂
- 批准号:
2329835 - 财政年份:2023
- 资助金额:
$ 16.46万 - 项目类别:
Continuing Grant
MsRI-EC- Develop a Research Infrastructure for Intelligent Water Systems
MsRI-EC-开发智能水系统的研究基础设施
- 批准号:
2035032 - 财政年份:2020
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
Collaborative research: Self-sustaining microbial photoelectrosynthesis for energy and fuel production
合作研究:用于能源和燃料生产的自维持微生物光电合成
- 批准号:
1834724 - 财政年份:2018
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
Collaborative research: Self-sustaining microbial photoelectrosynthesis for energy and fuel production
合作研究:用于能源和燃料生产的自维持微生物光电合成
- 批准号:
1704921 - 财政年份:2017
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
Workshop for Developing an Energy Positive Water Resource Recovery Facility Test Bed Network
开发能源积极水资源回收设施试验台网络研讨会
- 批准号:
1624219 - 财政年份:2016
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
I-Corps: Microbial Energy Systems for Sustainable Oil/Gas Hydraulic Fracturing Wastewater Management
I-Corps:用于可持续石油/天然气水力压裂废水管理的微生物能源系统
- 批准号:
1445213 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
PFI:AIR - TT: Microbial Capacitive Desalination for Produced Water Reuse and Energy Production
PFI:AIR - TT:用于产水回用和能源生产的微生物电容式海水淡化
- 批准号:
1445084 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
Understanding the Niche of Bioelectrochemical Systems for Water and Energy Sustainability
了解生物电化学系统在水和能源可持续性方面的应用
- 批准号:
1419938 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
Understanding the Niche of Bioelectrochemical Systems for Water and Energy Sustainability
了解生物电化学系统在水和能源可持续性方面的应用
- 批准号:
1235848 - 财政年份:2012
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
相似海外基金
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2129627 - 财政年份:2021
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028541 - 财政年份:2020
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028371 - 财政年份:2020
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
- 批准号:
1852379 - 财政年份:2018
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1705346 - 财政年份:2017
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1704326 - 财政年份:2017
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Testing the paradigms of the colloidal glass: Novel concentration jump experiments and large scale computer modeling
UNS:协作研究:测试胶体玻璃的范例:新颖的浓度跳跃实验和大规模计算机建模
- 批准号:
1801717 - 财政年份:2017
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Characterizing pyrogenic soil organic matter as a source of nitrogenous disinfection byproducts
UNS:合作研究:表征热解土壤有机物作为含氮消毒副产物的来源
- 批准号:
1512705 - 财政年份:2016
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: 30%-Efficient III-V/Silicon Tandem Solar Cells
UNS:%20%20协作%20研究:%2030%-高效%20III-V/硅%20串联%20太阳能%20电池
- 批准号:
1736181 - 财政年份:2016
- 资助金额:
$ 16.46万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Measurement and Modeling of the Pathways of Potential Fugitive Methane Emissions During Hydrofracking
UNS:合作研究:水力压裂过程中潜在逃逸甲烷排放路径的测量和建模
- 批准号:
1717142 - 财政年份:2016
- 资助金额:
$ 16.46万 - 项目类别:
Continuing Grant