UNS: Collaborative Research: Multiple-Scale Investigation of Chemical Looping with Oxygen Carrier Uncoupling
UNS:合作研究:载氧体解偶联化学循环的多尺度研究
基本信息
- 批准号:1510900
- 负责人:
- 金额:$ 30.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collaborative Proposals#1511818 / P.I.: Tian, Hanjiang#1510900 / P.I.: Li, FanxingThis research is expected to provide fundamental knowledge and scientific foundation for addressing CO2 capture and sequestration (CCS) from coal combustion, one of the most crucial areas of environmental sustainability. Among various CCS technologies, CLOU, a CLC scheme optimized for solid-fuel combustion (e.g., coal), represents one of the most promising options. Enabled by metal-oxide-based oxygen carriers capable of oxygen release and uptake under varying oxygen partial pressures, CLOU indirectly converts coal into separate streams of sequestration-ready CO2- and N2-rich flue gas via cyclic reactions. Consequently, the energy penalty associated with CO2 separation is inherently avoided. Compared to oxy-fuel combustion, the energy-intensive cryogenic oxygen separation is replaced by facile oxygen transfer enabled by the oxygen carrier, leading to significant improvement of carbon-capture efficiency. To date, most research in this area follows a trial-and-error approach due to lack of scientific understanding on the mechanism of coal-oxygen carrier interaction. Such an inefficient approach not only introduces potential uncertainties in technology and economics, but it also limits the progress of the development and implementation of CLC. The research is driven by the urgent needs for developing new scientific understanding and innovative tools and methodologies to investigate coal-oxygen carrier interaction and kinetics, oxygen-carrier optimization, and reactor and process simulations. The research will establish a solid theoretical groundwork for CLOU development from atomic level to reactor and process scales. These fundamental studies also are expected to lead to exciting discovery of novel catalytic-system and reactor configurations benefiting other research areas such as novel schemes for oxygen production, biomass combustion, coal/biomass gasification, and SOx/NOx emission control. Chemical Looping Combustion with Oxygen Carrier Uncoupling, a.k.a. CLOU, represents a unique combustion scheme that is directly related yet notably different from conventional combustion processes. It allows efficient fossil fuel combustion with minimal energy penalty for CO2 separation. Initiated by six leading U.S./Chinese research groups in the areas of both conventional and Chemical Looping Combustion (CLC), this multidisciplinary team brings together top chemical engineers, thermal engineers, mechanical engineers, and catalysis scientists to answer critical, interrelated scientific questions in combustion kinetics, surface reactions, oxygen-carrier development, thermal engineering, and reactor/process modeling, spanning from atomic level to reactor and process scales. Fundamental findings obtained from the proposed research are expected to significantly accelerate the development and deployment of CLOU for efficient coal combustion with integrated CO2 capture. The fundamental research focuses on four aspects: 1) lattice oxygen diffusion, surface reaction, and gas-phase combustion kinetics in a metal-oxide-assisted char/volatile oxidation scheme; 2) oxygen-carrier interactions with coal ash and impurities; 3) oxygen-carrier stability and performance evaluation in circulating fluidized bed CLC reactors, and 4) reactor and process modeling.These collaborative grants are co-funded by the Global Venture Fund (GVF) of NSF's International Science and Engineering section (ISE) and the CBET/ENG Combustion and Fire and Environmental Sustainability programs.
合作提案#1511818/P.I.:田,汉江#1510900/P.I.:李,范兴这项研究有望为解决燃煤二氧化碳捕获和封存问题提供基础知识和科学基础,燃煤二氧化碳捕获和封存是环境可持续发展最关键的领域之一。在各种CCS技术中,CLU是一种针对固体燃料(如煤炭)燃烧进行优化的CLC方案,是最有前途的选择之一。通过基于金属氧化物的氧气载体能够在不同的氧气分压下释放和吸收氧气,CLU通过循环反应将煤炭间接转化为单独的富含二氧化碳和氮气的烟道气。因此,自然避免了与二氧化碳分离相关的能源损失。与氧燃料燃烧相比,利用氧载体实现氧的快速转移取代了能源密集型的低温氧分离,从而显著提高了碳捕获效率。到目前为止,由于缺乏对煤-氧载体相互作用机理的科学理解,这一领域的大多数研究都遵循反复试验的方法。这种低效的方法不仅在技术和经济上带来了潜在的不确定性,而且还限制了CLC的开发和实施的进度。这项研究是由迫切需要发展新的科学理解和创新的工具和方法来研究煤-氧载体相互作用和动力学、氧-载体优化以及反应器和过程模拟的迫切需要推动的。这项研究将为从原子水平发展到反应堆和工艺规模奠定坚实的理论基础。这些基础研究也有望带来令人振奋的新催化系统和反应器结构的发现,有利于其他研究领域,如制氧、生物质燃烧、煤/生物质气化和SOx/NOx排放控制的新方案。氧载流解偶联的化学链燃烧,又名。CLU代表了一种独特的燃烧方案,它与传统的燃烧过程直接相关,但又有显著的不同。它允许高效的化石燃料燃烧,并将二氧化碳分离的能源损失降至最低。这个多学科团队由美国和中国在传统燃烧和化学循环燃烧(CLC)领域的六个领先研究小组发起,汇集了顶尖的化学工程师、热工、机械工程师和催化科学家,以回答燃烧动力学、表面反应、氧载体开发、热工和反应器/过程建模等关键且相互关联的科学问题,范围从原子水平到反应器和过程尺度。从拟议的研究中获得的基本发现,预计将大大加快开发和部署用于集成二氧化碳捕获的高效煤炭燃烧的CLU。这些基础研究集中在四个方面:1)金属氧化物辅助的半焦/挥发分氧化过程中的晶格氧扩散、表面反应和气相燃烧动力学;2)氧载体与灰和杂质的相互作用;3)循环床CLC反应器中氧载体的稳定性和性能评价;4)反应器和过程建模。这些合作赠款由美国国家科学基金会国际科学与工程分部(ISE)的全球风险基金(GVF)和CBET/ENG燃烧和火灾与环境可持续项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fanxing Li其他文献
Final Report : Instruments for Characterizing Carbon and Sulfur-Resistant Core-Shell Redox Catalysts for Combined Hydrocarbon Reforming and Water-Splitting Report Title
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Fanxing Li - 通讯作者:
Fanxing Li
Srsub2/subCeOsub4/sub as a robust high temperature sorbent for COsub2/sub capture with near 100% sorbent conversion efficiency
- DOI:
10.1016/j.cej.2022.135942 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:13.200
- 作者:
Haiming Gu;Guohui Song;Miaomiao Niu;Shanhui Zhao;Yunfei Gao;Fanxing Li - 通讯作者:
Fanxing Li
Integration du reformage/separation de l'eau et systemes electrochimiques pour generation d'energie avec capture de carbone integre
水和电化学发电系统的重组/分离和碳集成捕获
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Liang Fan;Fanxing Li;Liang Zeng;Deepak Sridhar - 通讯作者:
Deepak Sridhar
Ethane to liquids via a chemical looping approach – Redox catalyst demonstration and process analysis
通过化学循环方法将乙烷转化为液体——氧化还原催化剂演示和过程分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Leo Brody;Luke M. Neal;V. Haribal;Fanxing Li - 通讯作者:
Fanxing Li
A data-driven feedforward control combining feedforward tuning and cascaded iterative learning control
一种结合前馈整定和级联迭代学习控制的数据驱动前馈控制
- DOI:
10.1016/j.measurement.2025.117414 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.600
- 作者:
Zongwei Tian;Siyang Yu;Qingrong Chen;Fan Yang;Jian Wang;Jixiao Liu;Jupu Yang;Fanxing Li;Wei Yan - 通讯作者:
Wei Yan
Fanxing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fanxing Li', 18)}}的其他基金
PFI-RP: Converting waste gas into clean hydrogen for sustainable steel production
PFI-RP:将废气转化为清洁氢气,实现可持续钢铁生产
- 批准号:
2329857 - 财政年份:2023
- 资助金额:
$ 30.92万 - 项目类别:
Continuing Grant
EAGER: Fe/Mn-Containing Perovskite Oxides Promoted by Alkali Metal Molybdates for Chemical-Looping Catalysis – Thin-Film Preparation and Surface Characterization
EAGER:碱金属钼酸盐促进的含铁/锰钙钛矿氧化物用于化学循环催化 — 薄膜制备和表面表征
- 批准号:
2116724 - 财政年份:2021
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
NSF-BSF and Manufacturing USA: Lattice Oxygen Assisted Methane Activation for Modular Production of Fischer-Tropsch Ready Syngas
NSF-BSF 和美国制造:晶格氧辅助甲烷活化,用于费托合成气的模块化生产
- 批准号:
1923468 - 财政年份:2019
- 资助金额:
$ 30.92万 - 项目类别:
Continuing Grant
SusChEM: Investigation of a Core-Shell Redox Catalyst Platform for Oxidative Dehydrogenation of Ethane
SusChEM:乙烷氧化脱氢核壳氧化还原催化剂平台的研究
- 批准号:
1604605 - 财政年份:2016
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
CAREER:Bi-Functional Redox Materials with Facilitated Oxygen Transport for Catalytic Conditioning of Biomass-Derived Syngas
职业:具有促进氧传输的双功能氧化还原材料,用于生物质合成气的催化调节
- 批准号:
1254351 - 财政年份:2013
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
相似海外基金
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2129627 - 财政年份:2021
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028541 - 财政年份:2020
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028371 - 财政年份:2020
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
- 批准号:
1852379 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1705346 - 财政年份:2017
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1704326 - 财政年份:2017
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Testing the paradigms of the colloidal glass: Novel concentration jump experiments and large scale computer modeling
UNS:协作研究:测试胶体玻璃的范例:新颖的浓度跳跃实验和大规模计算机建模
- 批准号:
1801717 - 财政年份:2017
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Characterizing pyrogenic soil organic matter as a source of nitrogenous disinfection byproducts
UNS:合作研究:表征热解土壤有机物作为含氮消毒副产物的来源
- 批准号:
1512705 - 财政年份:2016
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: 30%-Efficient III-V/Silicon Tandem Solar Cells
UNS:%20%20协作%20研究:%2030%-高效%20III-V/硅%20串联%20太阳能%20电池
- 批准号:
1736181 - 财政年份:2016
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Measurement and Modeling of the Pathways of Potential Fugitive Methane Emissions During Hydrofracking
UNS:合作研究:水力压裂过程中潜在逃逸甲烷排放路径的测量和建模
- 批准号:
1717142 - 财政年份:2016
- 资助金额:
$ 30.92万 - 项目类别:
Continuing Grant